

! Monitor !

! user 1 !

! - O S / 8
! - B A S I C
!-- F O R T R A N
! - P A L 8
! - F O C A L
! - etc.

v

! user 2 !

! - O S / 8
! - B A S I C
! - FORTRAN
! - P A L 8
! - F O C A L
! - etc.

v

! user 3 !

! - O S / 8
! - B A S I C
! - F O R T R A N
! - P A L 8
! - F O C A L
! - etc.

v

! user 4 !

! - O S / 8
! - B A S I C
!-- F O R T R A N
! - P A L 8
! - F O C A L
!-- etc.

third printing, July 1979

- MULTI8 System Manual -

This manual is intended for the system-manager who needs a thorough
understanding of the system. It is the reference document for MULTI8
and will be kept up to date for future changes and extensions. This
version describes the MULTI8 V7A monitor and system tasks.

MULTI.8 Release Notes is a seperate document primarily intended for
users who upgrade from V6C to V7A. It lists the differences between
the two versions and guides you in converting your own tasks.

Timesharing users of MULTI8 will find all information pertaining to
terminal
Manual.

operation and background programming in the MULTI8 Terminal
Copies of these manuals may be ordered from:

Westvries Computer Consulting B.V.
Rijksstraatweg 19, 1969 LB Heemskerk

The Netherlands

Print History

September 1976 preliminairy and incomplete version
November 1976 first printing, describing V6A
April 1977 second printing, describing V6B
July 1979 third printing, describing V7A

- MULTI8 System 'Manual" -
Preface

.
MULTI8 is the result of a two-year co-operation of the Medical
Biological Laboratory of TNO Rijswijk and the Physiology Department of
the University of Utrecht, both in Holland. During this period the
system was redesigned several times, eventually resulting in a stable
piece of software that has proved to be very reliable. From the
beginning the designers of MULTI8 have felt that the system should be
general and flexible so that it can be used by other PDP8 users also.
In that way we are assured of a long and stable life which is of
utmost importance to the users of the system.

We think that a complex software product like MULTI8 can not be
distributed without good maintenance and support. Therefore MULTI8 is
distributed via a commercial organization, giving possibilities for
support that can not be realized by the non-profit laboratories where
the system was developed.

I hope that MULTI8 will be a contribution to the use of that silly
12-bitter', which time after time has proved to be competitive with
much wider machines.

Ernst Lopes Cardozo i
Utrecht, november '76. . 1 -

" L
>

MULTI8 V7A is the accumulated result of about 3 years of further
development done at the Physiology department of the University of
Utrecht. An important factor in the realization of V7A is the
availability of the Memory Management Unit built by DIGICOS BV. This
hardware module, designed to the specifications of the MULTI8
implementers, enhances the protection and addressing structure of the
PDP8 to allow a smooth operating virtual memory system. Besides the
tmoret and 'faster', emphasize has been on 'bettert. Better
configuration procedures, better (yes, it was possible to improve)
reliability, better maintainability. And still, in this exploding
microprocessor world, the old PDP8 seems to hold a place for its own.

Ernst Lopes Cardozo
Ravenswaay, June 1979

- MULTI8 System Manual -
TABLE OF CONTENTS

- - - - - -

- MULTI8 System Manual -
1. Introduction

MULTI8 is a real-time/timesharing system for the family of PDP8O
computers. The system consists of two parts, the foreground doing the
real-time work, and the background executing the timesharing programs.

The foreground consist of 2K resident code called the Monitor.
Monitor implements all necessary primitives to enable a large number
of independent 'taskst to run concurrently and cummunicate with each
other in a well defined and secure manner. Most of the functions that
are in traditional operating systems burried in the monitor or
executive are in MULTI8 built as separate tasks, resulting in an
extremely flexiBle system.

Tasks may CALL each other in much the same way as subroutines are
called. They can STOP and START each other or WAIT for SIGNALS from
other tasks or from outside the system (interrupts). External tasks
reside on the system disk, whereas internal tasks are permanently
present in memory. External tasks are brought into memory
automatically whenever required. Monitor takes care of dynamic core
allocation and task code relocation. Tasks may specify that they have
to be CONNECTed to one or more external interrupts and supply their
own interrupt handling routines. This mechanism gives direct acces to
MULTI8'S fast interrupt response (less than 250 usec worst case, 20
usec normally). Within the foreground a number of system supplied
tasks are available, eg. device drivers, a command decoder, ODT-task,
password task, etc.

The timesharing background is created by a number of co-operating
tasks, that use an 8K to 32K section of memory to generate a virtual
PDP8 for each timesharing user. On these virtual machines the OS/8O
single user operating system is run, giving each user acces to an
efficient filesystem and a powerful set of system programs. Full
device sharing (eg. lineprinter, disk, DECtape, etc.) is provided by
the timesharing subsystem in an automatical way. Users do not need to
allocate or release devices explicitly. Background users are denied
destructive access to both the foreground as well as other user's
programs and data. They may however access other user's (or the
system~s) disk area on a read-only basis. Powerful communication
primitives are implemented to allow the background programs to direct
foreground tasks to perform any desired realtime action. Thus a
timesharing program may take analog data or perform other highly
real-time functions by triggering a foreground task to perform the
time-critical actions. This results in a well structured and
efficient system design.

The generation and maintenance of MULTI8 requires a P D P ~ E or PDP8A
based OS/8 V3D system with sufficient file storage space to contain
the MULTI8 source files. The execution of MULTI8 with one or more
OS/8 backgrounds requires a minimum of 16K memory and at least 256K
disk storage (RF08). Check the System Generation section for details
on hardware requirements.

The MULTI8 package consists of PAL8 sourcefiles that should be
assembled with a configuration parameter file that specifies the

O PDP and OS/8 are trademarks of Digital Equipment Corporation.

- MULTI8 System Manual -
hardware and software environment. This includes peripherals, number
of backgrounds, etc. First the MULTI8 monitor, contained in the files
M1.PA - M5.PA is assembled, with a DDT-compatible symboltable output.
This symboltable is then processed by the program GLOBL, resulting in
a file with symbol definitions (MS.PA). Next the monitor dump program
and all external tasks are assembled with these symbol definitions.

This manual starts with the description of Monitor, which implements
the interrupt handling scheme, multi-tasking and (foreground) memory
allocation. Next a number of system tasks are treated, the system
disk driver, terminal handlers and some more. Thereafter the
timesharing subsystem is considered, first the resident central
emulator, the input reader and output writer, then the non-resident
emulator tasks and the background scheduler. A separate chapter is
devoted to configuration and installation procedures. The last
chapter describes some utility programs that are part of the MULTI8
package.-

The reader is assumed to have a fair knowledge of the PDP8 instruction
set, the PAL8 assembler and the OS/8 system. For reference he may

the OS/8 Handbook useful.
: ! ; 9r;o 0 3 . &ÃˆT3aZÃˆ Ãˆ<. 0 3
. ~ r " ls,<'!IIb!?i%si c,do. $ q u Â ¥ 1 ~ ~ 3 i i

1.1 Coding Conventions
m ~ * t ~ S i ~ g d 32;a; ' i?~lsr i '~~e: i i t

Throughout the code of MULTI8 and its tasks a number of coding
conventions have been adhered to. They were selected in order to -
increase the legibility of the source program: ,:. .,~ ? d.l '? ..j

4 ..
- Code that is executed with the interrupt system disabled is marked
by a triple slash before the comment, eg.

CLA ///CLEAR ACCUMULATOR

- Code that is executed with a *strangeq datafield in effect is
marked by double slashes. In the monitor this means that the
datafield differs from the instruction field. In some tasks the
normalq datafield setting is the field where the background data
tables reside, field 1 , which may be different from the instruction
field. In these tasks the double slashes appear when the datafield
does not equal the normal setting.

- Instructions that follow a skip-instruction or a call to a
subroutine that has multiple exits are marked by a single space
preceding the op-code, eg. Â ¥ > . I ., ?-" ,L 1"; ^ O ' f : : >!". f 'Â 'j,',"i'J."'l ? (j "-..,, ,:a i f i j . i ~ - - ~ ~ , , a & ~ !.. Â¥ 5';. r...:.3,b.., ; -,.ps-\

1
1

1
i

SZA
JMP ELSE /NO

. . .

- Parameters following a subroutine call are preceded
spaces. Thus a call to an OS/8 handler will be coded like:

by three

- MULTI8 System Manual -
JMS I (HANDLER /CALL THE HANDLER

FUNCTION /FIRST PARAMETER
BUFFER /SECOND PARAMETER
BLOCK /LAST PARAMETER

JMP -ERROR /ERROR RETURN, NORMALLY SKIPPED
CLA CLL /NORMAL RETURN

1.2 System Layout

A sample layout of the components of MULTI8 in the PDP8 memory is
shown in figure 1-1. Not all components are needed in all
configurations. Consult the configuration section for details.

o - o - o -
.- " . " ~. - - - - - m-

field 0

! ! !
I ! !
I ! !

:
. ,~,,.; ,

,.' ! ! !
, , ,.

...LC, these fields are used by
n y; .'>, the virtual memory system I. . , I .

to execute user programs
! ! !
! ! !

," ,. :, .,, ; + . . ,, ,.., . .: Figure 1-1. Sample memory layout. .. > \ ~ , ,
,, , . .

- MULTI8 System Manual -

2. Monitor

Monitor is the lowest level in the MULTI8 structure. its unctions
are 1) interrupt handling, 2) multi-tasking and 3) memory allocation.
These functions will be described in the above order. Section 2.4
will show how an external task is coded.

2.1 Interrupt Handling

As MULTI8 is intended to be a fast real-time system, interrupt
handling must be as quick as possible. Interrupt handling code might
be executed a few thouthand times per second, which means' that every
single instruction must be considered with care. The interrupt
handling logic has been designed with these facts in mind.

When the cpu honors an interrupt request, a hardware generated JMS 0
instruction is executed. At address 1 a JMP 177 is found, where the
actual interrupt processing starts. First the AC and flag word are
saved, whereafter the skipchain is entered in order to determine which
device flag(s) caused the interrupt.

The skipchain is composed of four-word entries, one for each flag that
may cause an interrupt. In general, each entry has the following
format:

SKPIOT ///TEST THEFLAG
JMP .+3

a

///NOT SET - JUMP TO NEXT ENTRY
CLRIOT ///FLAG WAS SET, CLEAR IT
JMS I ZHRDINT ///GO GENERATE A SIGNAL FOR THE

///CORRESPONDING EVENT FLAG

ZHRDINT is a page 0 location pointing to HRDINT. HRDINT is a routine
that signals an 'event' for a certain event flag. Event flags are
designated bv their index in HRDLST. The subroutine HRDINT will never
return at ail, but the JMS-generated returnaddress is used to compute
the proper index in HRDLST. Event flags are used to synchronize tasks
and external devices or tasks mutualy. A task may WAIT until some
event is signalled, ie. a certain interrupt is received or another
task has performed some function. Events are further described in
section 2.2.

The order of the entries in the skipchain induces a priority
structure. Flags that are at the beginning of the chain are serviced
before the flags at the end. This effect is enhanced by the fact that
after processing of one interrupt the monitor will test whether there
are any other interrupts pending (by means of the SRQ-instruction).
In that case we return to the beginning of the skipchain, thus
favouring the first flags again. The actual order of the entries in
the skipchain can be defined in the configuration file.

- ! J
So interrupts are processed by HRDINT and converted to software
signal's. Now there are two possibilities- 1)there was a task WAITing

- MULTI8 System Manual -
for this signal; 2)there was no task WAITing for this signal.

In case 1) the interrupt is termed a 'significant event' and the
following actions are taken: The WAITing task is schudeled, that
means its Task Control Block (see the section on multi-tasking) is
queued in the INTQ. Next the status of the system is considered. If
the system was executing some other foreground task, then a normal
interrupt exit is made, returning to the interrupted task. If the
system was at lower priority, ie. executing a background program or in
the idle loop, then the processor status is saved (routine RSAVE) and
the DISPATCHER is entered in order to select a foreground task for
execution. Thus the background is pre-empted by foreground tasks.
The system status is determined by examination of CURTSK, a page 0,
field 0 variable with the following encoding:

Negative a foreground task is in execution;
CURTSKZTask Control Block Pointer (TCBP) QAT

Positive a background program is in execution. BJOB points
to the dataset of the executing BG.

Zero the system is executing the idle loop:
A . , NULL, JMP NULL .-- .- --

! -: , ' ,.,:;.,*:' - , !" N O T E e u s o r d
The encoding of CURTSK requires that the address Â¥-s.- nc-,

of a Task Control Block is between 4000 and 7777.
This limits the total number of tasks in the
system to a (theoretical) maximum of 256.

In case 2) the interrupt is not a 'significant event'. The monitor
will immediatly return to the interrupted program. Some interrupts
require immediate action. Lets take the (TC08) DECtape control for
example. When the controler is in 'search' mode it will generate an
interrupt each time a blocknumber is read from the tape and deposited
in memory. The software should compare this blocknumber with the
desired blocknumber. In case these are the same, the controler status
should be changed to 'read' or 'write1 in order to initiate the actual
datatransfer. However, the new controler status must be loaded before
the first data word is over the tapeheads. This leaves about 400 usec
after receipt of the interrupt.

This is just one example of a situation where immediate action is
required in response to an interrupt. Tasks that have to deal with
such conditions can use the CONNECT feature of the monitor. This
means that the relevant skipchain entrie(s) are patched by the monitor
in order to redirect the interrupt to the serviceroutine embodied in
the task. A connected skipchain entry has the following format:

., .
SKPIOT ///TEST THE FLAG i C.1
JMP .+3 ///NOT SET - JUMP TO NEXT ENTRY T t l l c l
CDF CIF TSKFLD ///SETUP FOR TRANSFER TO FIELD OF TASK
JMP I CONTAB+n ///JUMP VIA POINTER IN PAGE ZERO

,T#I:

I

- MULTI8 System Manual -
CONTAB (connect table) is located on page 0 , field 0. When a task is
connected to an interrupt (see below) the address of its interrupt
service routine is entered in CONTAB.

N O T E
In the case of connected interrupts the flag is
NOT cleared in the skipchain.

After doing what has to be done the interrupt routine must return to
the monitor. This can be done in one of two ways:

CDF CIF 0 ///PREPARE INTERRUPT EXIT
JMP I ZFSTEXT ///BACK TO PROGRAM, NO SIGNIFICANT EVENT

TAD (EVENT ///AC 05-11 IS EVENT NUMBER
CIF 0 ///LEAVE DATAFIELDsTHIS FIELD
JMS I ZSOFINT ///GO SIGNAL SIGNIFICANT EVENT

STATUS ///BIT 01-11 IS TRANSFERRED TO WAITING TASK
///ZSOFINT DOES NOT RETURN !

noth ZFSTEXT and ZSOFINT are on page zero of every foreground field.

When a connected task is finished, it must be disconnected from the
interrupt before its memory space can be released. So the original
skipchain entry must be restored. The monitor is able to do so
because it has saved the CLRIOT at initialization time. All CLRIOT1s
can be found in CLRLST, which is in the data-area in field 0.

Internal tasks are CONNECTed by direct modification of the skipchain
source. Examples of permanently connected interrupts are the system
disk and the timer. External tasks are CONNECTed by Monitor when they
are brought into memory and disconnected when their memory space is
released. Whether an external task is to be connected is determined
by its Task Header.

The Task Header ocupies the first words of each external task
(locations 200, 201, etc.). The first word contains the task name
(eg. 11N"100+11A&3777). The second word contains the task length
(number of pages, in bits 0-4), the autostart flag (bit 5) and the
number of connected interrupts (in bits 6-11). For each connected
interrupt two words follow, containing the device number (not the
hardware device code, but the event number) and the entry address of
the interrupt service routine in the task.

11A"100+111&3777/TASK NAME IS A1
200 /ONE PAGE, NO CONNECTED INTERRUPTS

"X100+11Y&3777 /TASK NAME IS XY
601 / f PAGES. ONE CONNECTED INTERRUPT
PLOT /DEVICE NUMBER OF PLOTTER
INT /ENTRYPOINT OF SERVICE ROUTINE

INT, 6502 ///CLEAR PLOTTER FLAG

- MULTI8 System ~ a n u a l -
N O T E

The first character of a taskname must be aphabetic
(A-Z):, to insure that the coded name is postive, as
opoSed to TCBPs.

The Task Header is followed by the Page Header, a list of pointers
that have to be relocated, ending in a zero word. Task execution
starts at the first word behind the Page Header.

Another example is the papertape reader task, a task that reads
papertape with the highspeed reader in much the same way as the PTR:
handler of OS/8 does. This handler makes use of the CONNECT feature,
thus the interrupts are serviced by the task itself. For one request
(call) it has to read several hundreds of characters. These can be
stored immediatly in the buffer and there is no reason to start any
task execution before the buffer is full. The interrupt that fills
the last word of the buffer is declared a 'significant eventf, and
SIGNALS the completion of the request. So only one in a few hundred
interrupts gives rise to serious processor action, the others being
handled by the interrupt routine only. Normally the execution time of
interrupt routines is between 50 and 150 usec, while the activation of
a task requires a multiple of this time. So the connect feature may
reduce interrupt processing overhead considerably.

N O T E
During interrupt processing the cpu-status is only
partially saved. Interrupt service routines may
not disturb the MQ and EAE registers (A/B mode,
stepcounter). They should not turn the interrupt
system on (no ION) and may use only auto-index
register 13 (AUT013). Interrupt service routines
may not use the CDTOIF instruction. Interrupt
routines may NOT call the Monitor.

The MULTI8 foreground is a multitasking system. That means that all
parallel executing programs are organized as 'tasksf, well defined
pieces of program that communicate with each other through primitives
suplied by the Monitor. Inside a task no parallel execution takes
place (appart from possible CONNECTed interrupt routines). A task may
be viewed as a subroutine that is called in order to perform a
specific function. Examples of tasks are the device drivers, the
diagnostic timer, etc. A device driver task is called with a
formatted set of parameters that specify what transfer has to be
performed. The task interprets these parameters and controls its
device accordingly. When the transfer is completed, the driver task
will inform the caller of that fact.

Some tasks are always called like subroutines, eventually returning
control back to the calling task. Other tasks are started and execute
in parallel with the task that initiated them. The distinction is

- MULTI8 System Manual -
made by the way the task is called, not by the way the task is coded.

Frequently tasks have to synchronize their execution with other
activities in the system, either peripheral devices or other software
tasks. To this purpose the Monitor provides certain functions
('primitivesf) that enable a task to WAIT until a specified event has
taken place.

MULTI8 tasks have to be coded in assembler language. External tasks
are assembled by PAL8 and subsequently loaded by the MULTI8 task
builder. This results in a tasklibrary on the system
device, from which tasks can be readily loaded into memory when
required.

Each task is identified by its Task Control Block (TCB), maintained by
Monitor:

word 0:

word 1:

word 2:

word 3:

word 4:

word 5:

word 6:

word 7:

The general format of a Monitor call is:

JMS MONITOR /MONITOR ENTRY IN PAGE ZERO
FUNCTION OPTION /FUNCTION PLUS OPTIONAL OPTIONS
PARAMETER /SEE DESCRIPTION OF REQUESTS

JMP ERROR /ERROR RETURN, /NORMAL RETURN

MONITOR is the Monitor entry point, duplicated in page zero of every
foreground field. No CIF or CDF is required. Not all functions have
a parameter, errorreturn or normal return. Note that the contents of
MQ, stepcounter and A/B mode flipflop (EAE) are lost during a monitor
call! AC, Link and datafield are retained, unless otherwise
specified.

The following Monitor calls are provided:

RUN is used to start a task. The calling task continues.
CALL is used to call a task as a subroutine. The calling task is

suspended until the called task has issued a RETURN.
RETURN is used to transfer control back to the calling task, or to

Moni tor-5

- MULTI8 System Manual -
stop a task that was RUN.

STOP is used to suspend execution of a task. That task may later
be continued by a RESTRT request.

SUSPND wil.1 'stop the issuing task itself.
RESTART continues execution of a task that was previously STOPped.

RESTRT has no effect when issued to a task that is not
STOPped.

WAIT suspends task execution until a specified event is
signalled.

SIGNAL is used to signal the occurence of an event, eg. to signal
completion of an 1/0 request to another task.

RESERV returns an event number in the AC. May be combined with
RETURN and CONTINUE. In that case both the issueing task
and its caller receive the event number.

HALT is used to stop the task's execution. The difference
between HALT and RETURN is that RETURN will enable execution
of the calling task in case the task was called. HALT may
be combined with SIGNAL, a construction that is often used
in handler tasks.

PRECEDE has as only effect that the task is scheduled in MAINQ. It
can be used to break very long computations to avoid
monopolisation of the cpu.

BREAK is used to set a tasks breakflag, or to test-and-clear a
tasks own breakflag.

REQBLK is used to request a buffer area from Monitor. These
buffers consist of one or more consecutive memory pages.

RELBLK is used to release a buffer area formerly requested from
Monitor.

Before going into detailed description of these requests, we will
describe the possible combinations of requests and options. Options
are special side-effects that may be enabled with certain requests.
The following options do exist:

RELEASE will potentailly free the memory space the task is
occupying.

SWPOUT will free the memory space the task is occupying. When the
task is later activated again, a new immage will be read
from disk. Note that the task image is never written back
to disk.

CONTINUE will enable the task execution after a request that normally
stops execution (eg. RETURN).

CLEAR will reset the task's backlink so it is no longer reserved
for the previous caller.

- MULTI8 System Manual -
Request - options: RELEASE SWPOUT CONTIN. CLEAR ..
RUN no no no no 'a .A

CALL ,

RETURN

STOP
SUSPND
RESTRT
BREAK

WAIT
SIGNAL
RESERV

HALT
PRECEDE

REQBLK no no no no
RELBLK no no no no ..

SIGNAL and HALT may be combined. RUN is a combination of CALL with
CONTINUE. EXIT is the combination RETURN CLEAR. RESERV may be
combined with RETURN.

Another way to look at the various requests is how they influence the
number of parallel executing tasks. The following requests will
increase this number by one: RUN, RESTRT of a task that was STOPped or
SUSPNDed, SIGNAL of an event for which a task was waiting. Requests
that reduce the multitasking level are: RETURN of a RUN task, STOP,
SUSPND, WAIT and HALT.

A task may be in one of the following states; Initialy it is
inactive. Its Task Control Block and name are in the system tables,
its image is in memory or on the disk, but it is not manipulated by
Monitor as long as it is inactive. The TCB is -not queued in any
system queue. When the task is activated through a RUN or CALL
request by another task (the first tasks are activated by the
initializing program) it is queued in the main scheduler queue
(MAINQ). The task is now active (though not actually possesing the
cpu), its backlink is nonzero (=I if run, =TCBP of caller +1 if
CALLed). When elected by the dispatcher, it will receive the cpu,
provided its image is in memory. In case it is not, the Monitor will
create a temporary task that will bring the image in memory. During
its active life the task may for some time be suspended, eg. when it
WAITS for an event. Such a situation is characterised by the fact
that the task is not threaded in any system queue, but a pointer to
its TCB is stored in the event variable for which it is waiting. Its
backlink will still be non-zero. Eventually the task may become
inactive again as result of a RETURN or HALT request. Then its
backlink will contain zero or the TCBP of the task that called it. In
the latter case our task may only be called by the same caller again.

So the backlink plays a key role in determining whether a task may be
RUN or CALLed by another task or not. For the RUN or CALL request to
be succesful, the backlink of the called task must be either zero or
equal to the TCBP of the calling task. Thus the backlink may have one

- MULTI8 System Manual -
of four values:

=0 Task can be called by any other task.
= 1 Task is active; can not be called by any task.
=TCBP task is inactive, can be called by previous caller only.
=TCBP+I task is active, can not be called by any task.

It will be clear now that there are two separate mechanism operating
on the backlink. A task can be reserved for one other task (eg.
lineprinter driver task). The identity (TCBP) of the owner is then
recorded in the backlink. The backlink is reset when the task uses
the CLEAR option. When a task becomes active, its backlink is
incremented by one, with the effect that no task in the system can
call it because the backlink does not match any TCBP.

RUN

Parameter: name or TCBP of task to be RUN. In case a name is
specified, Monitor will overwrite it with the TCBP. AC, Link and
datafield are transferred to the called task. Both the calling and
the called task are queued in MAINQ, with the calling task first. The
callers AC, Link and datafield remain unchanged. The errorreturn is
taken if 1) the taskname does not exist or 2) the task is busy or
reserved by another task. In the first case the taskname is
unchanged, in the latter case it is changed in the proper TCBP. When
the errorreturn is taken, an implicit PRECEDE is executed. So it is
legal to write a JMP .-3 on the errorreturn location, provided the
taskname is known to exist.

> a 2 , ,, , . ,"*z7.J?

P i.' ' :cSi r.' u ~ M
CALL - -, A : 2.'

Parameter is taskname or TCBP. If it is the taskname, it will be
overwritten with the TCBP to prevent repeated lookup of the taskname.
The issuing task is suspended until the called task executes a RETURN
request. When the calling task continues, it has the AC, Link and
datafield of the RETURNing task (just like a regular subroutine).
Errorreturns are the same as with RUN. The options RELEASE and SWPOUT
may be used when the calling task has no vital information in its
immage. In that case the called task may overlay the calling task,
depending on memory availability (see for example 0D.TK).

RETURN

Return has no parameter. If the task was previously CALLed (not RUN),
the current AC, Link and datafield are transferred to the calling
task, which is scheduled in MAINQ. The issuing task stops, unless the
CONTINUE option was specified. Both SWPOUT and RELEASE may be used to
free memory occupied by the issuing task. The CLEAR option can be
used to reset the backlink. If CLEAR is not used, the task can only
be called by the same caller next time. It is illegal to use RETURN
twice, eg. ... RETURN CONTINUE ... RETURN. For combinations of
RETURN with RESERV see under RESERV. .~

STOP
, - 1 a >

- MULTI8 System Manual -

Parameter is taskname or TCBP. AC, Link and datafield of issuing and
target tasks remain unchanged. The STOPbit in the TCB of the target
task is set. If it was set already, no action is taken. When the
target task passes the dispatcher, its STOPPEDbit will be set and it
will not be executed. If the taskname is not present in the system,
the errorreturn is taken.

SUSPEND

The STOPbit and STOPPEDbi t of the issuing task are set. The issuing
task is not scheduled, ,and thus suspended until another task RESTRTs
it. There is no parameter and no errorreturn.

RESTRT

Parameter is taskname or TCBP. The STOP- and STOPPED-bit of the
target task are cleared. If the target task had its STOPPEDbit set,
it is scheduled in MAINQ. AC, Link and datafield of both issuing and
target tasks remain unchanged. If the taskname is not present in the
system, the errorreturn is taken.

WAIT

Parameter is number of event to wait for. The task is suspended until
a SIGNAL is received for that event. Because event flags may buffer
one signal, the return may be immediate. A negative AC specifies a
timeout value. It is the number of system ticks (normally .I sec.)
after which a timeout signal will be given by the timer task (TI). A
positive or zero AC has no effect. Note that timeouts may only be
used for permanently assigned events. If a timeout is received on an
RESERVed event flag, and the normal signal is later received, that
eventflag can not be used any more, because it will stay in the
INTERRUPTED state. The exception is for eventflags specifically
reserved to receive a timeout signal only, eg. by the STALL request.

After return from the WAIT request, AC 1- 1 1 contains a code received
from the signalling agency. Code 2 is reserved for timeout signals
from TI, and a few others are used by the blockdriver protocol.
Generally 0 means ok. RELEASE and SWPOUT may be used to free memory
during the suspended period. Special feature: a negative eventnumber
will result in an immediate return, with the AC set to the complement
(!) of the eventnumber. (-&ow TW WI-L k c = - 4 , - 2i

HIB-- ~ < ~ r f l c . f - '</&I 4 9' 1 A
If the eventflag was already in the WAIT-state, ie. another task was
already waiting for that same event, an immediate return is taken with
the AC set to 1. t ^

IJÃ ef-i en-lot
~ ~~. s ,̂! T '""Â¥(j ., * . t A <.

STALL .Vfl,Y?.:'Â¥;.Â -~aii ,

The STALL request is identical to the sequence RESERV a -slot - WAIT
with timeout. The parameter is the number of ticks that the task
should be suspended. This value may be positive or negative. After

- MULTI8 System Manual -
the specified interval the task will continue execution, WITH THE AC
SET TO THE TIMEOUT CODE (~2). The original value of the AC is lost,
but Link and datafield remain unchanged. The options RELEASE and
SWPOUT may be used to free memory during the suspended period.

SIGNAL

Is used to signal the occurence of an event. The parameter is the
eventnumber. The AC, bits 1-11 are passed to the WAITing task. AC,
Link and datafield of the issuing task remain unchanged. SIGNAL can
be combined with the HALT request. For options see at HALT.

HALT

This request has no parameter and no return. It is used to stop
execution of a task that has already issued RETURN CONTINUE. HALT may
be combined with SIGNAL to notify some other task of the completion of
the issuing task. The RELEASE and SWPOUT options may be used to free
memory. The CLEAR option may be used to clear the backlink of the
issuing task.

RESERV

RESERV has no parameter. It allocates one of the free event slots in
the monitor area and returns the number of this event in the users AC.
The allocated event can be used for synchronization between two tasks
for one time. To this end the issuing task must pass the number of
the event he got to the task he wants to synchronize with. Then one
of the tasks may WAIT for that event, and the other task can SIGNAL
the event. Note that no timeout may be specified with events
allocated through RESERV. Most of the MULTI8 blockdrivers use the
combination RESERV RETURN CONTINUE to allocate an event slot and pass
its number to the calling task in one operation.

PRECEDE 7'3 y r r *
17 ' . ~q :

Because the taskscheduler uses a non-preemptive algorithm, tasks are
never interrupted by other tasks between two Monitor calls. So the
response time at the tasklevel depends on the length of computations
between two successive Monitor calls in tasks. Normally tasks do very
litle (often the execution of the Monitor requests takes more time
than the taskcode in between), but there may be cases where a task has
more than a few milliseconds continious computation to do, eg. a Fast
Fourier Transform. If the other system activities request it, the
response time at the tasklevel may be improved by splitting the long
computation in two or more shorter parts, by inserting a PRECEDE
request in an outer loop. PRECEDE has no parameter and no error
return. AC, Link and datafield are retained, but the contents of MQ
are lost.

BREAK

Has one parameter that may be a task name (or TCBP) or zero. If it is
a task name, the break flag of that task is set. If the taskname is

Monitor-10

- MULTI8 System Manual -
not found in the system tables, the error return is taken. If the
parameter is zero, the tasks own break flag is tested and then reset.
If the break flag was set, the error return is taken.

REQBLK

Tasks may request pieces of memory to be used eg. as buffer area.
Generally the programmer has the choice to include the buffer in his
task, where they may be used to hold initialization code, or request
them dynamically. The latter has the advantage that the task becomes
split in several smaller parts that can easier be fit in memory.
However, it requires some extra program logic. The RELBLK request has

parameter, specifying how many pages should be allocated. On
the AC points to the first word of the buffer, and the

register is set to the field where the buffer resides. The
contents of the buffer are undefined. If not enough space is

the error return is taken. Note that the buffer is always
area and will never cross a fieldboundary.

RELBLK

Is used to release a buffer area allocated with REQBLK. The users
datafield should be set to the field of the buffer, and the AC should
be an address in the first page of the buffer. On return, the users
datafield is equal to his instruction field, AC and Link are reset.
If the AC and datafield are illegal on entry, the task is aborted.
Note that bufferareas are always released unconditionally, eg. like
SWPOUT of a task.

2.3 Memory Allocation.

This section describes how the foreground memory area is managed by
Monitor, how external tasks are loaded into memory, how they are
relocated and how their space is released.

Of the memory fields reserved for the foreground, about 4K is used for
the resident Monitor, data areas and the internal tasks. The
remaining space is allocated for external tasks and buffers. This
space is managed in units of one page (128 words). The memory map
(CORMAP) contains one word for each page, with the following encoding:

0 Page is free
positive page is potentially free, entry is -TCBP of task
negative page is occupied, entry is TCBP of task, or
-3 page is permanently occupied by resident matter
-2 page is not last page of an allocated buffer - 1 page is last page of an allocated buffer

Requests for space are handled by the monitor routine HOLE. HOLE is
called with the number of pages requested in the AC. The allocation
algorithm is First Fit, ie. the first sufficiently large section of
contiguious free pages encountered is allocated. HOLE will make two

- - - - - -

- MULTI8 System Manual -
scans over the coremap, if necessary. The first scan looks for free
space (zero entries). If no sufficient free space is found, the
second scan will look for free or potentially free space. Potentially
free space (positive entries) consists of pages that hold an intact
image of a task that is logically on the disk. When such a task is
activated, the coremap is inspected to see if its image is still
intact; In that case no diskread is necessary, only the coremap is
updated to reflect the fact that the task is logically loaded now. So
HOLE will avoid to load a new task over an image that can still be
used, as long as enough free space is available. Whether a tasks
image is reusable or not is determined by the task itself, that uses
either the RELEASE or SWPOUT option to leave memory. Although the
name SWPOUT might sugest the contrary, task images are never written
back to disk. A task should only free its corespace if it has no
sensitive data in its body. In practice a lot of tasks specify
RELEASE with their RETURN or HALT request, although they are sometimes
called many times per second. This costs very litle extra time, but
ensures that a lot of room is potentially free for peak moments (see
the core mape reproduced in section 3.2).

In order to anticipate a possibly large request, the Monitor tries to
keep the active memory area as small as possible. This is partly
effected by the First Fit algorithm, partly by the so called
'bubbling1 stategy. When a task uses the RELEASE option, the map
entry immediately preceding the tasks entries is inspected. If that
page is free, the RELEASE is executed as SWPOUT.

$$ AA AA .. BB (BB ACTIVE. DOES RELEASE NOW...)
$$ AA AA (EXECUTED AS SWPOUT ...)
$$ AA AA BB (BE ACTIVE AGAIN, LOADED CLOSE TO AA)

As the example shows, a hole between the active tasks will 'bubble' up
to the large empty area at the top of core.

When an external task is activated, the following sequence occurs:
First, the TCB is inspected to see if the task is in memory or
'ondisk'. If it is in memory, it can be started right away. If it is
on disk, the memory map is inspected at the entry corresponding to the
page where the task was previously loaded. The latter is determined
by the value in the Start Address entry of the tasks TCB. If the task
image is still okO, his coremap entries are negated and the task can
be started on the old image. If the task image is not intact (perhaps
the task used SWPOUT), HOLE is entered to allocate an area equal to
the length of the task. HOLE maintains a count of the smallest
request that could previously not be satisfied. If the new request
asks for more, no scan is tried, and the error return is taken. In
that case the task has to wait till more space becomes available. Its
TCB is queued in COREQ. Each time a section of memory is released the
entire COREQ is threaded onto the MAINQ. Thus all waiting tasks will
again be considered. Normally HOLE will be able to allocate the
requested space. Monitor will now create a temporary (nameless) task
that issues the disk request to transfer the task into memory. The
code executed by this nameless task is a reentrant part of the
monitor. If more than one task has to be loaded at the same time,
each one gets its own 'faketask'.

The taskimage is ok if the coremap entry corresponding to the, tasks
first page contains -TCBP. n?- C+L-L&O T A t K OoCT p.e<-~frp<? ̂

- MULTI8 System Manual -

After reading the task image in memory, the relocation and the
establishing if CONNECTed interrupts must be done.

MULTI8 tasks are both page-relocatable as well as field-relocatable.
The former means that a task may be loaded at any page within a field
(excluding page zero), the latter implies that a task may be loaded in
any (foreground) field.

Page-relocation is attained by collecting all off-page intra-task
references in a special section of each page, the 'page header7. This
page header occupies the first locations of the page and ends with a
zero word. When the task is loaded, Monitor will update all words in
the page header to reflect the difference between the actual load
address and the address where the task was assembled (200). After
this relocation pass, there is no additional overhead due to
page-relocation.

Field-relocatability must be ensured by the programmer, with some help
of Monitor. The instruction CDTOIF can be used to Change the
Datafield TO the Instruction Field. MYCDF, available on page-zero of
every foreground field, contains a CDF to that field. ZMYCDF is a
pointer to MYCDF, also available on page zero. So a methode to get a
CDF to the current datafield is (if the datafield is one of the
foreground fields):

TAD I ZMYCDF //LOAD AC WITH CDF TO CURRENT DF.

father than:

RDF
TAD (CDF

MYCIF and MYCDIF are available too, with their pointers ZMYCIF and
ZMYCDIF. Another useful routine is DEFER, also on page zero:

DEFER. 0
DCA X
TAD I X
JMP I DEFER

X is a temporary on page zero (in all foreground fields) that may
freely be used by tasks. The restriction is, that X looses its value
at every Monitor call.

CDTOAC is a page zero JMS that executes a CDF to the datafield
conained in AC 6-8, eg.:

AND C70
TAD C6201
DCA XACCDF

XACCDF. CDF
JMP I .-5

- MULTI8 System Manual -
In addition, page zero contains 7 scratchpad locations (ZTEMI, ZTEM~, . ZTEMT), the auto-index registers (AUT010, -11, -12, -14, -15, -16,
-17) and 27 useful constants: C2, C3, C4, C7, C17, C37, C70, c77,
Ciao, C177, C200, C212, C215, C240, C260, C3700, ~6201, C7000

C7700 (=MlOO), C7770t=M3), c7776 (=M2), c7777 (;;;;;) (=MlOOO), ~ 7 4 0 d (=M4OO), M215, C7600
(=M10), C7771 (=M7), C7774 (=M4),T

(=MI ,. ?: . s ;,
T'."'. ~ r ' .

N O T E
AUTO13 is reserved for use by interrupt service
routines and should never be used by tasklevel
code.

2.4 Writing a Task

The first stage in writing a task is a careful planning of the setup
for the problem at hand. Of course it is possible that your problem
can be solved by one single foreground task, but this is seldom the
case. Most problems can be separated in a real-time part, that
involves some time-critical actions and one or more control or compute
parts that are less time bound. The general philosophy is to do as
much as is feasable at the highest level of the system, eg. in the
background. There time and memory space are cheapest. One of the
following reasons may exist to program part of the problem in the
foreground: 1) Time-critical interactions with peripheral apparatus,
2) problem has to run for long times and can be satisfied by just a
few pages in the foreground.

Most likely your program involves user-interaction, realtime
data-aquisition, computation and output of results. This kind of
situations can best be tackled by a combination of background and
foreground programs. Initially the background program performs the
interaction with the user, requesting parameters, etc. Next, the
background program activates a foreground task, passing whatever
parameters are necessary. The foreground task performs the realtime
functions, relaying the raw results to the background program (either
via a diskfile or directly into memory). Finally the background
program performs computational tasks and presents the results to the
user.

The advantages of this approach are that the larger part of the
programming can be done in a protected environment, during normal
timesharing operation of the system. Also, the background program can
use all the features of the OS/8 environment. In fact, it can be
programmed in one of the highlevel languages available. Just add a
small PALS, MACREL, SABR or RALF routine to interface with the
foreground. Only a small part of the problem, usually just one or a
few pages, have to be programmed in assembler and debugged with the
system shut off for normal operation. In this way the functions of
the foreground and background are clearly separated; modification of
the computational, input or output part of the program can easilly be
accomplished, without disrupting timesharing service.

As an example we will investigate the following situation. Some
special device has been coupled to the machine with a digital

- MULTI8 System Manual -
input/output interface. When the operator presses a button on the
device, it starts some measurements and delivers 16 words, one word
every 30 seconds. For each word an interrupt is generated by the
interface. Our program should read these 16 values, perform some
computation on it and typeout the results on the terminal. Also, it
should write the results in a diskfile for later analysis. Our main
program will be written in Fortran 11. It starts with requesting the
name of the diskfile to be produced, the run number, etc.

DIMENSION IBUF(16) - ..- .- r 0r.~':,, or;.: b~1.s
READ(1,IOO) INUMBER tihn..

100 FORMAT(' RUN NUMBER; ',I4)

Next the foreground task will be activated to take the 16 data words.
The operator is requested to press the button that starts the
measuring devi

a *

WRITE (
110 FORMAT

Next comes a section of SABR code. It activates the foreground task
AQ that takes 16 readings and stores the values in the array IBUF.

S TAD (CODE /GET CODE OF MEASUREMENT TASK IN AC
S CPAGE 3 /NEXT 3 INSTRUCTIONS MUST BE CONSECUTIVE !
S 6770- . . -.- /THE TRAP !
S SKP /JUMP OVER THE PARAMETER
S M B U F /PARAMETER FOR AQ (ADDRESS OF ARRAY)

CODE is a small integer (assign from 20 upward) that selects the
proper function in the foreground. The 6770 is the so called 'giant
IOT'. It is trapped and the Central Emulator (see section 4.2) will
call a task, dependent on the value that is in the users AC at that
time. After completion of that task, the background program is
continued at the location following the 6770.

At this point the array IBUF contains the 16 readings from the device.
The rest of the Fortran program is straightforeward.

Now we come to writing the foreground task. Each (external) task
starts with a preamble, followed by a task header, followed by a page
header. Every following page of the task starts with a page header
only. Tasks always assemble from x200 upward. The preamble (which
can be empty) is used to instruct the taskbuilder to store certain
values in certain system tables in MULTI8. The preamble is only used
at task-build time and is not part of the task image (of. the
build-format for OS/8 handlers). In this particular case the name of
our task should be inserted in GIGATB, the table that is used by the
interpretation of trapped 6770 instructions:

',,. . c . .:.,, ,,,.,,.:,,~,.,. :, 6

K0 ' i , : . ; /MANDATORY FOR EACH ENTRY IN THE PREAMBLE
CDF 10' /ALL BG-RELATED TABLES ARE IN FIELD 1
GIGATB+CODE /INDEX GIGATB WITH 'CODE'
"AA100+"Q&3777 /DROP THE NAME OF THIS TASK THERE

. I

- MULTI8 System Manual -

The first word of the task header is the task name (2 characters):

/DATA AQUISITION TASK. NAMEsAQ. SERVES TO INPUT 16
/VALUES FROM i f i f i fxx DEVICE. IS CALLED VIA A GIANT IOT
/FROM THE BACKGROUND PROGRAM. PARAMETER: ADDRESS OF ARRAY
/IN USER PROGRAM WHERE THE VALUES HAVE TO BE STORED.

"A" 100+"Q&3777 /TASK NAME IS 'AQ'
200 /ONE PAGE, NO CONNECTED INTERRUPTS

The second word of the task header specifies the length of the task,
200 for 1 page, 400 for two pages, etc. Also, the loworder bits
specify the number of connected interrupts (zero in our case). We
assume that an entry in the skipchain has been created that fields the
interrupt of our device. The event signalled by these interrupts will
be called INT (see section 2.1 for the skipchain).

The page header contains pointers that must be relocated by the
monitor. The page header ends with a zero.

AQBUFA, BUFFER /ADDRESS OF BUFFER. WILL BE RELOCATED.
0 /ZERO IS END OF PAGE HEADER

This task is called by the central emulator with datafieldzl,
AC=pointer to the data-area of the current background and the link is
cleared. The status of the background is EMULATE, and its instruction
field is known to be in memory.

AQ DCA AQBG //POINTER TO BG AREA, DF=1

/INITIALIZE SOME POINTERS ...
TAD (-20 //20 (OCTAL) VALUES TO COME

8 minutes.

TAD AQBUFA
DCA AQPNT

//ADDRESS OF INTERNAL BUFFER
//TO POINTER

Now we can start taking data from the device. Tnis will last
approximately During this time the background program can
be swapped to disk to free background memory for other users. This is
possible because this task will buffer the 16 data words in the
foreground. The background program can only be swapped completely
when its status is INACTIVE. Also, we have to signal the background
scheduler that its status has been changed to ensure prompt reaction.

TAD I AQBG //GET USERS STATUS REGISTER
TAD (INACTIVE-EMULATE //SET HIM INACTIVE, CLEAR EMULATE
DCA I AQBG //SET BG INACTIVE
JMS MONITOR //SEND SIGNAL TO BACKGROUND SCHEDULER SO HE

SIGNAL //WILL NOTICE THAT THIS USER IS INACTIVE NOW.
BSSLOT //(THE PRIVATE EVENTNUMBER OF THE B.SCHED.1

/WAIT FOR DATA NOW ...
CDTOIF /SET DF TO THIS FIELD (WAS FIELD 1)

- MULTI8 System Manual -
AQLOOP, CLA CLL CML PAR /AC=4OOO, LONGEST TIMEOUT POSSIBLE (204.8 SEC)

JMS MONITOR /WAIT FOR READING NOW
WAIT
INT

SZA CLA /TIMEOUT ?
ISZ AQERR /YES, DEVICE IS HANGING.

SKP
JMP AQOUT /TAKE ERROR EXIT
6 146 /READ DATA
DCA I AQPNT /STORE VALUE IN INTERNAL BUFFER
ISZ AQPNT /BUMP BUFFER POINTER
ISZ AQCNT /I6 VALUES DONE ?
JMP AQLOOP /NO, MORE TO COME

Now the internal buffer is filled with 16 data words. So it's time to
get the background program in memory and move the data. At this
point, we do not know if any of the background program's fields is in
memory. Moreover, the background scheduler can at any moment decided
to remove a field of our program. We should therefore request the
background scheduler to bring the field that we need, the field were
the user's buffer is located (ie. his current instruction field) in
memory if it is not already there, and then it should stay there until
we finish copying the data. The procedure is quite simple. We change
the status of our bg from INACTIVE to INCORE, and set the number of
the virtual field we need in bits 6-8 of the state word. Then we send
a SIGNAL to the background scheduler.

AQOUT, CDF 10 //MUST ACCESS TABLE IN FIELD 1
TAD (UFLDS //GET VIRTUAL INSTRUCTION FIELD
TAD AQBG / /
JMS DEFER / /
AND C70 //IN BITS 6-8
TAD I AQBG //ADD INTO BACKGOUND STATUS
TAD (-INACTIVE+INCORE //CLEAR INACTIVE, SET INCORE
AND (-LONG-1 //CLEAR LONG TO GET SOME PRIORITY
DCA I AQBG / /
JMS MONITOR //SIGNAL BACKGROUND SCHEDULER THAT OUR STATUS

SIGNAL //IS CHANGED.
BSSLOT / /

As soon as possible the background scheduler will transfer the
requested field into memory. Then he will send a signal to the
private event of this background to let us know that it's present now.
Of course we should wait for this signal before accessing the
background memory. The number of the real memory field were the
requested virtual field has been loaded is passed as status with the
SIGNAL from the background scheduler, in bits 6-8 again. The
background scheduler has changed the state of our background to
EMULATE, which insures that the field we just obtained will not be
removed from memory.

TAD (USLOT //COMPUTE ADDRESS OF USERS EVENT NUMBER
TAD AQBG
JMS DEFER //GET EVENT NUMBER
DCA AQEVENT //STORE IN WAIT-REQUEST

JMS MONITOR //WAIT FOR SIGNAL FROM BACKGROUND SCHEDULER
WAIT //THAT THE FIELD IS IN MEMORY NOW

- MULTI8 System Manual -
AQEVENT, 0 //SET TO NUMBER OF BACKGROUND'S EVENT

TAD C6201 //FIELD IS IN CORE NOW
DCA AQCDF //CDF TO USER'S FIELD

The background scheduler has cleared the INCORE bit, and set EMULATE.
Next we copy the data words from our internal buffer to the buffer in
the background program. The address of the target buffer is at AQARG
in the background instruction field.

ISZ AQERR //DID WE HAVE ERRORS ? ~ ,hs< fonw a s h i A
JMP AQEXIT //YES, QUIT . . , ~ . .~.: .

TAD (UPC //COMPUTE ADDRESS OF BG'S PROGRAM COUNTER
TAD AQBG
JMS DEFER //GET USERS PROGRAM COUNTER
IAC //NOW POINTS TO FIRST PARAMETER
JMS AQUCDF //ACCESS BACKGROUND FIELD
JMS DEFER //GET ADDRESS OF BACKGROUND ARRAY
TAD MI //LESS ONE FOR AUTO-INDEX
DCA AUTO10 //SET UP AUTOINDEX POINTER TO USERS BUFFER

CLA CMA //AC=-1
TAD AQBUFA //RELOCATED POINTER TO INTERNAL BUFFER
DCA AUTO 1 1 //SETUP AUTO INDEX POINTER IN INTERNAL BUFFER

TAD (-20 / /
DCA AQCNT //SET UP COUNTER FOR 16

AQMORE, CDTOIF /ACCESS THIS FIELD
TAD I AUTO11 /GET A VALUE
JMS AQUCDF //ACCESS USERS FIELD
DCA I AUTO10 //STORE VALUE IN USERS BUFFER
ISZ AQCNT //I6 WORDS DONE ?
JMP AQMORE //NO, MORE TO DO

Done! Return to the central emulator, that will continue the
background program at the instruction behind the 6770. Note that the
AC must be zero here, otherwise the central emulator will assume that
some emulation error has occurred and stop the background program.

AQEXIT, JMS MONITOR //FINISHED, RETURN TO CENTRAL EMULATOR.
EXIT SWPOUT //NO REASON TO STAY IN CORE.

AQUCDF, 0 /SUBR. TO SET DF TO USER'S
AQCDF, CDF //CDF TO BACKGROUND'S INSTRUCTION FIELD

JMP I AQUCDF / /

AQBG, 0 /POINTER TO USERS BACKGROUND DATA
AQCNT, 0 /COUNTER
AQERR, -1 /ERROR FLAG, - 1 IF NO ERROR

AQPNT, 0 /POINTER IN INTERNAL BUFFER
BUFFER, ZBLOCK 20 /I6 LOCATION INTERNAL BUFFER.

This task should be assembled with the monitor definitions file, MS.PA
(see 5.2) and then loaded in the system:

- MULTI8 System Manual -,,-

ERRORS DETECTED: o
LINKS GENERATED: 0

A more formal description of the interactions between emulator tasks,
the central emulator and the kground scheduler is given in section
4.5. For examoles of more con x interaction between a foreeround
task and a background program you should study the emulator tasks, eg.
TE, FE, PE, LE and RE.

SML
o - o -

