
•

software
05/8

Handbook Update
Order No. OEC-S8-0SHBA-A-ON4

. ,,'---------)

ABSTRACT

05/8
Handbook Update

Order No. DEC'-S8-0SHBA-A-DN4

This document includes all previous corrections to the
05/8 Handbook, and contains the documentation to
support V3D of OS/8.

SUPERSESSION/UPDATE INFORMATION: This manual updates the
05/8 Handbook for V3D
of OS/8.

OPERATING SYSTEM AND VERSION: OS/8 V3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, October 1975
Revised: December 1975

September 1977

The information in this document is subject to change without notice and should not be construed as a commit­
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-l0
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-I0
TYPESET-II

INTRODUCTION

This update is a collection of changes and additions to the 08/8 Handbook for
use with Version 3D of 08/8. These changes and additions are documented
herein by Chapter as they appear in the handbook. This update also includes
information on several new or revised 08/8 utility programs. These utility
programs, included as Appendixes to the handbook, are:

RXCOPY
SET
FUTIL
DUMP
RKLFMT

iii

Appendix I
Appendix J
Appendix K
Appendix L
Appendix M

Page

ii

viii

1-2

1-4

1-5

1-9

1-10

1-15

1-16

FRONT MATTER AND -CHAPTER 1

AcDDITIONS AND CHANGES

Addi tion/C orrection

In the second line from the bottom, change "Communications Services, Parker Street" to
"Software Distribution Center".

In the first line of the second paragraph, change "impossible" to "possible".

At the end of the second paragraph, add "OS/8 also runs on the VT-78."

Step.1, change DEC-SS-OSYSB-A-UC1 to AL-4711C-BA

Step 1, change DEC-SS-OSYSB-A~UC2 to AL-4712C-BA

Step 6, First line of example, change "form" to "from"

Step 6, change DEC-SS·OSYSB-A-UC1 to AL4711C-SA

Step 1, change DEC-12-0SYSB-A-AC1 to AL-3580C-BM

Step 1, change DEC-S8-0SYSB-A-TC1 to AR-45S5C-BA

Step 1, change DEC-S8-0SYSB-A-TC2 to AR-45S6C-BA

Step 2, change DEC-S8-0SYSB-A-TC3 to AR-45S7C-BA

Step 4, In the MCPIP: program line 5 is changed, lines 12 and 13 are deleted, and three
lines are appended. The complete program reads as follows:

!SYS :CCL.SV <CSAO :CCL.SV
!SYS :DIRECT .SV<CSAO :DIRECT .SV
.!SYS: FOTP .SV<CSAO :FOTP .SV
.!SYS :PIP .SV<CSAO :PIP .SV
!SYS :LIBS .RL<CSAO:LIB8 .RL
!SYS :EDIT .SV <CSAO :EDIT.sV
!SYS:PALS.SV<CSAO:PAL8:SV

Page

1-16 (cont.)

1-17

1-19

Addition/Correction

.!SYS :CREF .SV<CSAO:CREF .SV

.!SYS : BITMAP .SV<CSAO: BITMAP .SV

.!SYS:BOOT .SV<CSAO:BOOT.SV
!SYS :CAMP.SV<CSAO:CAMP.SV
.!SYS:FORT.SV<CSAI :FORT.SV
.!SYS:SABR.SV<CSAI :SABR.SV
.!SYS:LOADER.SV<CSAI : LOADER.SV
.!SYS :SRCCOM.SV<CSAI :SRCCOM.SV
.!SYS:EPIC.SV<CSAI : EPIC.SV
.!SYS :PIPI O.SV<CSAI :PIPI O.SV
.!SYS:RESORC.SV<CSAI :RESORC.SV
.!SYS:DTCOPY.SV<CSAI :DTCOPY.SV
.!SYS:TDCOPY.SV<CSAI :TDCOPY.SV
.!SYS:TDFRMT.SV<CSAI :TDFRMT.SV
.!SYS:DTFRMT.SV<CSAI :DTFRMT.SV
.!SYS:LIBSET.SV<CSAI :LIBSET.SV
.!SYS:RXCOPY.SV<CSAI :LIBSET.SV
.!SYS:HELP.SV<CSAI :HELP.SV

Step 5, change the current Step 5 to Step 6 and insert the following as the new
Step 5.

To write SET.SV and HELP.HL files on the system device, mount AR4688C-BA in
drive 0 and AR4689C-BA in drive 1. Type the following command line after the
asterisk is printed on the terminal.

~SYS :SET .SV<CSAO:SET .SV
~SYS:HELP.SV<CSAI :HELP.SV

By typing the command line:

~RCCL

you can run your programs by using CCL commands.

Step 6, in the new Step 6 change DEC-S8-0SYSB-A-TC6 to AR4690C-B.

Step 2, change (DEC-S8-0SYSB-A-PBl) to AK4678C-BA.

Change the NOTE to read as follows:

NOTE
When building from the low-speed reader (KS33), after
entering PTR followed by carriage return the system responds
with an up-arrow; the user must respond by typing any
character on the terminal and then immediately turn on the
reader. If the reader is not turned on promptly, the system
hangs. Remember to turn off the reader when it reaches the
leader/trailer at the end of the tape.

2

Page

1·19 (cont.)

1·20

Addition/Correction

Step 6, change (DEC·S8·0SYSB·A·PB4) to AK-4679C·BA.

Step 7, change (DEC-S8·0SYSB.PB5) to AK-4680C·BA.

Step 9, change ABSLDR to EPIC

Delete the entire section "Loading System Programs from Paper Tape" pages 1·20 through
1·25, and replace with the following:

Loading Paper Tape Binary Kit

Paper tape binary kits for OS/8 V3D are punched using EPIC. This use of EPIC simplifies
loading these tapes onto SYS: All tapes, except those used to build a Monitor and a Sys­
tem Head and EPIC itself, must be loaded onto SYS: using EPIC. The procedure for
loading paper tape binary kits is described below.

NOTE
Skip Step 1 if EPIC .SV exists in system directory.

1. Place the EPIC binary tape (AK-4667C·BA) in the reader and type:

..... R ABSLDR (CR)
_*PTR:($f.

Turn on reader and type any key on keyboard.

NOTE
(CR) is carriage return (press RETURN key). ($) is escape or
altmode, strike ESC key.

EPIC will be read in by this procedure. If necessary, turn off the reader. Save EPIC as
a file by typing:

..... SAVE SYS:EPIC.sV(CR)

2. Type R EPIC(CR)

3. To load any paper tape onto SYS:, put the paper tape for that file in the reader and
type:

!SYS:</O/Y($) for the high speed reader or
!SYS:</O/Y/L($) for the low speed reader. (Turn on the low speed reader, depress

CONT on the operator's console after the computer halts to allow loading
the tape in the reader. After the tape has read in, the computer halts again.
If there are no more tapes to that file to be loaded, tum off the reader and
depress CONT. If these are more tapes to the file continue to Step 4.

3

Page

1-20 (cont.)

Addition/Correction

4. If the file being created requires more than one tape to be input, the message:

END OF TAPE ENTER NEXT

will be displayed on the console terminal and the computer will halt with 7777(8) in the
AC. Place the next tape of the file in the reader, turn it on, and depress CONT. Repeat
Step 4 until all tapes for the file are loaded.

If the tapes of a multiple tape file are read out of sequence an error message:

NEED nnnn FOUND mmmm

will be output on the console terminal. Check the tapes of the file and place the proper
tape in the reader, and depress CONT on the operators console.

5. Repeat Steps 3 and 4 to load each tape or set of tapes into a file on SYS:

More information on EPIC can be found in Chapter 2 of the OS/8 Handbook
(DEC-S8-0SHBA-A-D).

6. If desired, you can load CCL.SV, EDIT.SV, and BATCH.SV (if you have the OS/8
Extension Kit) and then create a batch stream to load the desired files onto SYS:

Create a batch file as follows:

.... CREATE LOAD.BI(CR)
#A(CR)
$JOB TO LOAD FILES USING EPIC(CR)
.REPIC(CR)
*SYS :</O/Y$(CR)
*SYS :</O/Y$(CR)

*SYS :</O/Y$(CR)
.SU LOAD.BI/T(CR)

(CTRL/FORM)
#E(CR)

Then run it, using the command:

~SU LOAD.BI/T(CR)

$=dollar sign key (shift/ 4) - not
escape or altmode. Add/L before
$ (see example in Step 3 above)
if reading from low speed
reader.
Put in a few of the load commands;
the more you put in, the fewer times
the job will re-submit itself.
(CTRL/FORM) means hold down
CTRL key, depress "L" (FORM) key

Every time the computer stops, replace the tape in the reader with a new one (or next
in sequence) and depress CONT. Ignore any

L/T ERROR

messages on console terminal due to running off the end of the paper tape.

4

Page Addition1Correc-tion

1·29 Insert the following table before the section entitled "Restarting OS/8":

Table 1·1 iA RXOI Floppy Disk Bootstrap

Step Octal Switch Register
Values Setting And Then

012 345 678 91011
1 0000 000 000 000 000 press EXTD ADDR LOAD
2 0024 000 000 010 100 press ADDR LOAD
3 7126 111 001 010 110 lift DEP key
4 1060 001 000 110 000 lift DEP key
5 6751 110 111 101 001 lift DEP key
6 7201 111 ,010 000 001 lift DEP key
7 4053 100 000 101 011 lift DEP key
8 4053 100 000 101 011 lift DEP key
9 7104 111 001 000 100 lift DEP key
10 6755 110 111 101 101 lift DEP key
11 5054 101 000 101 100 lift DEP key
12 6754 110 111 101 100 lift DEP key
13 7450 111 100 101 000 lift DEP key
14 7610 111 110 001 000 lift DEP key
15 5046 101 000 100 110 lift DEP key
16 1060 001 000 110 000 lift DEP key
17 7041 111 000 100 001 lift DEP key
18 1.061 001 000 110 001 lift DEP key
19 3060 011 000 110 000 lift DEP key
20 5024 101 000 010 100 lift DEP key
21 6751 110 111 101 001 lift DEP key
22 4053 100 000 101 011 lift DEP key
23 3002 011 000 000 010 lift DEP key
24 2050 010 000 101 000 lift DEP key
25 5047 101 000 100 111 lift DEP key
26 0000 000 000 000 000 lift DEP key
27 6753 110 111 101 011 lift DEP key
28 5033 101 000 011 011 lift DEP key
29 6752 110 111 101 010 lift DEP key
30 5453 101 100 101 011 lift DEP key
31 7024 111 000 010 100 lift DEP key
32 6030 110 000 011 000 lift DEP key
33 0033 000 000 011 011 press ADDR LOAD and

press CLEAR and
press CONT

5

Page

1-31

1-32

1-37

1-41

Addition/Correction

Add the following to Table 1-12 Permanent Device Names:

RXAn

RKBn

NULL

DUMP

Diskette n (floppy), where n is an integer in the range of 0-7 inclusive.

DECpack n, where n is an integer in the range 0-1.

On input this returns an immediate end-of-file; on output this device ignores
characters.

Prints contents of device blocks on LPT.

Add the following to Table 1-13 Assumed Extensions:

NOTE
Refer to Appendix F for a complete list of commonly used
extensions.

Under the GET Command, add the following insert before the last sentence in that
paragraph.

In addition, location 7747 in field 0 is loaded with the block number of the first block
of the core image file (.SV) specified.

Under the "JOB STATUS WORD," delete "Bits4-9 Unused and reserved for future
expansion" and add the following:

Bit 4= 1 A core image file that was generated by LINK containing overlays.

Bit 5= 1 This program cannot be run by the R, RUN, or GET commands under
OS/78.

Bit 6-9 Unused and reserved for future expansion.

Replace this page with:

RUN Command
The RUN command is of the form:

.RUN dev file.ex
or

.RU dev file.ex

6

Page

1-41 (cont.)

1-52

Addition/Correction

The RUN command, like the SAVE command, handles only core-image files. The file
indicated (file.ex) on the device specified (dev) is loaded into core and its core control
block is moved to the system scratch area. The program is started at its starting address.
Location 7747 in field 0 is loaded with the block member of the first block of the core
image file (.sV).

The RUN command is equivalent to a GET and a START command.

If an extension to the file is not specified, the extension .SV is automatically added to the
file name. For example:

-=.RU DTAIPROG

causes the file PROG .SV on DECtape 1 to be loaded and started.

R Command
The R Command is of the form:

.R file.ex
and is similar to

.RUN SYS file.ex

This command handles only core image files from the system device. The file is loaded
and started and location 7747 is loaded with the block member of the first block of the
core image file (.sV). If the file name extension is not specified, the extension .SV is
automatically added.

The R command differs from the RUN command in that a core control block is not
written to the system device. In order to save a program which does not have its core
control block in the usual location on the system device, all the optional arguments of the
SAVE command must be explicitly stated. System programs are most often called using
the R command, since they need not be resaved.

To call a program which is to be later updated and saved, use of the RUN or GET com­
mands is suggested.

START Command
The START command is of the form:

Middle of the page, remove the paragraph that begins "The user may write his own CCL
commands ... " and insert:

Sophisticated users who wish to add their own CCL commands should refer to the OS/8
V3 source listing of CCL(DEC-S8-0SYSB-A-LA18).

7

Page

1-53

1-55

1-56

1-57

1-58

After BACKSPACE add
BASIC
Delete CORE
After DIRECT add
DUPLICATE
After MAP add
MEMORY
Delete RES and replace with
RESOURCE

In Table 1-16 add options

-N NULL
-D DUMP

Addition/Correction

Add the following as the last paragraph under the section entitled "INDIRECT
COMMANDS":

A single quote is permitted after file specification; if used, it is ignored. A single quote
prevents the next letter from being considered part of the indirect command file name.

In the third paragraph, change "64" to "40". In the example above the paragraph,
change "0102036404000506" to "0102034004000506".

Before the title "BOOT Command", insert the following:

BASIC COMMAND
The BASIC command requests execution of the BASIC editor.

Format:

.BASIC

Example:

~BASIC
NEW OR OLD---

For additional information on BASIC, refer to Chapter 6.

This command runs CCL.SV and BASIC.SV.

8

Page

1·59

1·61,62

1·64

Addition/Correction

Add the following to the section entitled "COMPILE Command", after
".COM file.ex<file.ex":

or
.COM A,B<C,D
for multiple Input/Output files.

The COMPILE command produces similar results when chaining and specifying either
the /T option or the /T /F options. For example, both of the following commands pro·
duce a RALF symbol table only:

.COM LPT F:Ll/T/G
=COM LPT FLI/T/F/G

Delete the CORE command and its description.

Before the EDIT command, insert the following:

DUPLICATE COMMAND
The DUPLICATE command copies or transfers the entire contents of one diskette to
another diskette.

Format:

.DUPLICATE outdev:<indev:/options

In addition to the necessary arguments in the command line, DUPLICATE options can be
used to affect the DUPLICATE operation.

Example:

. DUPLICATE RXAI :<RXAO:

The contents of input device RXAO is copied onto output device RXAl.

Changing Devices Before and After Executing the DUPLICATE Command - You can
only duplicate from RXAO to RXAI or RXAI to RXAO. Driver RXA2 and RXA3 is not
supported by the DUPLICATE command. Since the Monitor resides on the system
device, the system device must remain on line when interacting with the Monitor and any
OS/78 system programs.

If you want to transfer the contents of a diskette containing only files (one that does not
contain a system), use the /P option. The /P option pauses before and after its execution
of the DUPLICATE command. A 'ready message followed by a question mark is dis·
played. This pause provides time to remove the system device and mount a device onto
which the contents are to be transferred, to or from. To start the DUPLICATE operation,
type a Y after the question mark and press the RETURN key. After the DUPLICATE
operation is completed, a message is displayed asking if the Monitor is remounted. The

9

Page

1-64 (cont.)

1-65

Addition/Correction

second pause provides time to remove the new device and remount the system device so
control can return to the Monitor. After remounting the system device, type a Y after
the question mark and press the RETURN key, to return control to the Monitor.

Example:

-:oDU RXAO:<RXA1:/P
READY?Y
IS MONITOR REMOUNTED?Y

..:..

Performing a Read Check
To check the integrity of a diskette, use the IR option and specify only the input device.
By specifying the IR option, every block of the specified device is read and checked for
bad sectors. If bad sectors exist, a message with the device, track number and sector
number is displayed. If none exist, control returns to the Monitor.

Example:

..:.DU <RXAI :/R
INPUT DEV READ ERROR TRACK:nn SEC:nn

Transfer Without Checking for Identical Contents
To transfer the contents of one device to another without performing any checks, use
the IN option. By specifying the IN option, the contents of the input device is trans­
ferred or copied to the output device. If IN is not specified and the DUPLICATE opera­
tion is completed, the contents of the output device is compared to that of the input
device to assure accuracy.

Check for Identical Contents Without Transferring
To check the contents of devices to see if they are identical without transferring, use the
1M option. By specifying the 1M option the contents of both devices are read and
checked for a match. If they do match, control returns to the Monitor. However, if they
differ in any way, a message, the device name, the track number, and the sector number
of the sectors or blocks that do not match are displayed.

Example:

..:..DU RXAI :<RXAO:/M
COMPARE ERROR TRACK nn SECTOR nn

This command causes the execution of both the CCL.SV and the RXCOPY.SV programs.

Add the following to the section entitled "EXECUTE Command", after
".EXE file .ex,file .ex":

or
.EXEA<B
to execute file "B" producing file "A" .

10

Page

1-66

Addi tion/ Correction

Delete the HELP command description and insert:

HELP Command
The HELP command sends information on OS/8 programs to the output device, usually
the terminal. There is a HELP program (HELP.sV) that is executed every time the HELP
command is used. There is also a HELP file (HELP.HL) that contains a list of all the
HELP sub files available and the actual HELP text itself. Both the HELP.SV and
HELP .HL files must be on the system device.

Format:

.HELP outdev: file .ex<argumen t

where:

argument is usually an OS/8 program or CCL command.

Example:

.HELP RXCOPY or .HELP DUPLICATE
- -

Note that the default output device is TTY.

The OS/8 software for the HELP files can be supplied on any device. Following is a list
of all the arguments that can be used with the HELP command.

ABSLDR BASIC BCOMP BRTS BOOT
BUILD "NONE" CCL CREF DIRECT
EDIT CREATE EPIC FORT FRTS
F4 FORTRAN F4ERR LIBRA LOAD
LOADER MAP BITMAP ODT PAL8
PAL PALERR PIP PIPIO DUPLIC
RXCOPY SABR SET SRCCOM COMPAR
BATCH SUBMIT TECO MAKE MUNG
FOTP LIST COpy RENAME TYPE
DELETE ASSIGN DATE DEASSIG GET
MEMORY R RUN SAVE START
SQUISH UA ZERO

There is a HELP file which contains all CCL commands. This file is displayed by typing
the HELP command without any arguments as follows:

.HELP

If a HELP file for a specific command is desired, type the name of the command for
which the information is desired. For example,

.HELPPAL

11

Page

1-66 (cont.)

1-68

1-70

Addi tion/Correction

To obtain a list of all legal arguments for HELP, type the HELP command followed by an
asterisk or type the HELP command followed by 'HELP' as follows:

.HELP *
or

. HELP HELP

Note that the HELP.HL file must be on the system device.

Both examples of the MAKE Command should specify "MAK" not "MA". Also, change
"% SUPERCEDING" to "%SUPERSEDING".

In the first line of the MUNG command example, change "HX!" to "HXl !".

Before the PAL Command insert the following:

MEMORY COMMAND
The MEMORY command is used to find the highest field available in hardware or to limit
that value in software.

Format:

.MEMORY n or .MEMORY

where:

n is an octal number representing the number of fields (4K) available to OS/8.
It is in the range of 0-7.

Example:

.MEMORY3

16K MEMORY

The following table lists the values of n and their meanings.

n memory

0 all available memory
1 8K
2 12K
3 16K
4 20K
5 24K
6 28K
7 32K

12

Page

1-70 (cont.)

1-74

1-77

1-79

1-81

1-99

Addition/Correction

To find the amount of memory actually being used by OS/8, type the command with
no argument.

...:..MEMORY

20K/32K MEMORY

In this example, a 32K system has been restricted to only 20K of available memory. This
was done by using a MEMORY 4 command.

If all available memory is being used, the total amount of memory is printed.

Example:

...:..MEMORY

32KMEMORY

This command causes the execution of the CCL.SV program.

Add the following note to the end of the section "U A, UB, UC Commands":

"The CCL commands UA, UB, and UC are used to remember and recall arguments.
These arguments are not deleted when the system date is changed. Most other CCL
commands do not remember commands typed at sessions on previous days."

In "Table 1-18 CCL Error Messages (Cont.)", change "% SUPERCEDING" to
"% SUPERSEDING".

Delete the / A option from Table 1-19.

In Table 1-21, insert a dot (.) in the lefthand column ("Character") of the first line.

In the second paragraph under the /1 option, change "-n" to "=n". The missing example
should be:

*IMPORT.PA[23] </1=27

Delete /L option and its description.

13

Page

1-102

1-120

1-122

Addition/Correction

Add the following NOTE to the end of Table 1-24:

"PIP does not ask the question ZERO SYS for a handler that is co-resident with the SYS:
handler. For example, ifboth SYS: and LTAO are LINCtape 0, a request to zero
LINCtape 0 will not produce the question. This is a potentially dangerous command."

In the last line of the first paragraph, change "0007" to "0006".

In Table 1-28, insert a slash (/) in the 1efthand column opposite the last line.

14

Page

2-3

2-34

2-36

2-37

2-38

247

CHAPTER 2

CHANGES AND ADDITIONS

Addition/Correction

In Table 2-1 Run Time Options, append the following:

/H Process the batch input file without echoing and without sending the $JOB and
$END batch monitor commands to both the terminal and batch log.

In the first paragraph of the section entitled "OS/8 Device Handlers", change
"Appendix H" to "Appendix G".

At the top of the page, change (DEC-S8-0SYSB-A-UC2) to:

AL4712C-BA

After Table 2-7 change (DEC-S8-0SYSB-A-TC4) to:

AR4S88C-BA

After Table 2-8 change (DEC-S8-0SYSB-A-PB2) to:

AK4660C-BA and (DEC-S8-0SYSB-A-PB3) to:

AK4671C-BA

In Table 2-9 after the entry "DF32 disk nonsystem handler" add:

RXO 1 SY disk system handler
RXO 1 NS disk nonsystem handler
VTSO VT-SO input handler
LQP line printer handler
Octal block DUMP handler
RX78B disk nonsystem
handler (for VT-78 only)

RX8E
RXOI
VTSO
LQP
DUMP
RXOI

The last example on the page should be:

$UNLOAD TC:DTA3

15

SYS
RXAO.RXAI
LST
LPT
DUMP
RXA2,RXA3

RXOlSY.BN
RXOINS.BN
VTSO.BN
LQP.BN
DUMP.BN
RX78B.BN

Page

248

2-52

2-56

2-60

Addition/ Correction

The first example on the page should be:

$UNLOAD TC :DTAO ,DTA2

After the section entitled "VERSION" add:

SIZE

Syntax:$SIZE aname or $ SIZE aname=new value

aname must be the permanent name of a device currently marked as active.

Example: $SIZE RF08=1777

changes the length of the RF08 handler to 1777.

Function: The SIZE command modifies word ten of a handler header block. Word ten
specifies the size, in blocks, of a single platter on a system device.

In Table 2-11 after "?PLAT", add:

?SLOTS This error indicates you have inserted more than 8 groups of non-system
handlers. Each slot may have more than one entry pointo To correct, delete
PNAMES until there are 8 or less non-system handlers.

In Table 2-12 at the top of the page, change "25-26=unused" to 25=RX01 disk;
26=unused.

Change "31-37=unused by Digital" to:

31-35 Unused by Digital

36 Dump Handler

37 Unused by Digital

In the section "ENTRY POINT OFFSET", change all occurrences of "7-23" to "7-24".
In the list of devices, change "RK8 disk" to "RK8/RK8E disk", and add the following:

"RF/DF disk 24"
RXAO 30
RXA1 34

Also, change "Thus, the user-coded file " to "Thus, the user-coded file devices should
use entry points other than 7-24,30,34.

16

Page

2-61

2-69

2-70

2-77

2-97

Addition/ Correction

Add the following information:

CREATING A SYSTEM HANDLER

When creating a new system handler, the user must obey the following restrictions:

(a) The length of a bootstrap must be greater than or equal to 21 (octal) loca­
tions. A bootstrap shorter than 21 locations must be padded, otherwise.
BUILD results are unpredictable.

(b) The length of the bootstrap must be less than or equal to 177 (octal)
locations.

(c) If the system handler is a one-page handler, only the first 4 7 (octal) locations
of the bootstrap are significant. The remaining locations are ignored and not
written on the system device. Also, no handler may have more than 20 (octal)
entry points.

(d) If a system handler is 2 pages long, relative location 12 of the first page must
contain a 3. The second page loads into location 27600 and is stored on block
66 of SYS:

Add the following to the NOTE: RALF is not fully supported by CREF.

In Table 2-14 (CREF Options), change the /E option to /A.

After the last paragraph on this page, add the following:

NOTE
If you want the date printed in your directory listings, it

. must be entered into the system prior to the DIRECT
command.

Add the following examples to the "FILE ORIENTED TRANSFER PROGRAM
(FOTP)". These examples will help give the user a better understanding of the
program.

Transfer the file X.Y from disk to DECtape:

*DTAO:<X.Y

Transfer the files A, B, C, D and E from SYS: to DTA3:

*DTA3 :<SYS:A,B,C,D,E

17

Page

2-97 (cont.)

Addition/Correction

Transfer all FORTRAN source files from one DECtape to another, producing a log of
those copied:

DTA2:<DTAS :.FT/L

List all FORTRAN and BASIC files on the line printer in order of appearance on DSK:

LPT:< .FT,* .BA

List all FORTRAN and BASIC files on the line printer listing all FORTRAN files before
all BASIC files:

* LPT :<* .FT, * .BA/U

Copy all files other than .SV and .BN files from DT A3: to DSK: then copy all files other
than those whose name begins with a K from DTA2: to DSK:. Log all files copied:

DSK:<DTA3:.SV,*.BN,DTA2:K?????*/V/L

Copy the file A.B from DSK: to DT AI: changing its name to C. D. Give the new file
today's data:

*DTAI :C.D<A.B/T

Copy all files from LTA2: which have the extension .P A to SYS: changing the extension
to .PL allocating storage on SYS: without doing pre-deletions:

SYS:.PL<LTA2:* .PA/N

Find all files on RKA2: with the name FOO and any extension but which have today's
date, and copy them to SYS: changing the file name to WXYZ yet keeping the extension:

*SYS :WXYZ. *<RKA2 :FOO. * /C

Delete all disk files (except those with today's date) which either have the extension .LS,
.TM, or .BK and those whose file name begins with TMP:

* DSK :<* .LS, *. TM,* .BK, TMP??? * /D/O

Delete each .BN file for which there is a corresponding .P A file:

* * .BN<*.P A/D

Delete all .LS files on DTA3: for which there is a file on RKAO: with the same name but
an extension of either .P A, .RA, or no extension:

*DT A3: * .LS<RKAO: *.P A, * .RA, * /D

18

Page

2-97 (cont.)

2-106

2-113

Addition/Correction

Delete all files on the disk for which there are already copies on one of the four DEC tape
drives:

DSK:<DTAO:.* ,DTAI : *. * ,DTA2: *. * ,DTA3:*. */D

Produce a log of all files on DT AI: that have the file name FOO and an extension which
is the same as any file on SYS: that has a one or two-character file name beginning with a
"T". Do not perform any transfers or deletions:

*DTAl: FOO. *<SYS :T? * /N/D/L

Change the name of the file DSK:FILE.PA to FILE2.PA:

* FILE2.P A<FILE.P A/R

Rename all files on DTA6: with a .PA extension to have a .PB extension:

*DTA6: * .PB<DT A6: *.P A/R

Change the extension from .RL to .OL of all files on DT AI: that correspond to files on
DSK: with the same name and today's date:

DTAI :.OL<* ,RL/C/R

In "Table 2-20 FOTP Options (Cont.)", add to the "/R" option:

(a) The rename option (/R) now looks at the /T switch. If /T is typed then not
only is the file renamed, but the new file receives today's date. Without /T,
the new name has the same date as the old name.

(b) The rename option (/R) now allows you to rename a file to its own name.
This was not previously permitted. It is not very useful unless some other
switch is included, for example /T.

(c) If no output file is specified with /R, then FOTP assumes the same name as the
first input file.

Example: To redate all files on a DECtape to Jan. 1, 1976:

pATE 1/1/76
-=..RENAME DTAO: *. * IT

Add the following options to Table 2-22:

/1 Assume the input device is a cassette drive. An input device must also be specified
on the command decoder line, but it is ignored. This option is used when there are
no cassette handlers configured into your system. The drive number is specified as
an option, e.g., /1 represents drive 1. The /1 and /0 options must not be used in the
same command line.

19

Page

2-113 (cont.)

2-140

2-142

2-143

2-146

2-152

Addition/Correction

/0 Assume the output device is a cassette drive. An output device must also be
specified on the command decoder line, but is ignored. This option is used when

-there are no cassette handlers configured into your system. The drive number is
specified as an option. The /1 and /0 options must not be used in the same
command line.

In the fourth paragraph change the second sentence to:

All error messages are of the form:

?XXX

where XXX is a 3-1etter mnemonic which references the list of error messages that
appears at the end of this chapter.

After the last sentence on this page, append:

If TECO runs on a machine with at least 12K of memory, the error message and a
description of the error message are displayed on the terminal.

In Table 2-28, under RUBOUT, append:

If SET TTY SCOPE is typed followed by a carriage return, RUBOUT erases 'the character
from the screen of a VT52.

In Table 2-28, under CTRL/C, append:

If CTRL/C is not typed as the first character after an asterisk (*) is printed, the ?XAB
error message (execution aborted) is displayed and control returns to TECO.

In Table 2-30, under the Y command, append:

If this command is issued while an output file containing text in the buffer is open, an
error message is displayed. To avoid this situation, use HKY.

In Table 2-30, under the P command, delete the description and replace with:

Writes the content of the buffer onto the output file then clears the buffer and reads
the next page of the input file into the buffer. A form feed is appended only if one was
present when the buffer was read in.

In Table 2-35 delete t Rtext 1 $ text2$ and the description.

20

Page

2-155

2-156

2-159

2-160

2-162

2-163

Addition/Correction

Under COMMAND LOOPS in the sentence "If n is not supplied, a value of 4096 is
assumed." change "4096" to "infinity".

Under Q-Registers, in the sentence "In the number storage area, each Q-register can store
one integer in the range -2048~~2047" change the range to:

-4095~~095

Change Table 2-37 as follows: The last sentence describing n%q$ should read "If n is not
present, it is assumed to be equal to I."

Replace the command n%$ with no/oq.

Under the nUq command change the range from "-2049~n~2048" to:

"-4095~~095".

In Table 2-39 delete the n-m" A and n-m"B commands and their descriptions.

Under the n"G command, change the range from "-2048~~2047" to:

"- 409 5~~09 5"

Under the section entitled Numeric Arguments, delete the second paragraph and insert
the following:

This leads to an important restriction on the maximum size of any numeric argument.
Commands which require positive arguments must have an argument in the range
0<n<8195, since 8195 is the largest number which may be stored in one TECO word.
Commands which may have positive or negative arguments require an argument in the
range -4095<n<4095, because -4095 is the smallest number which may be stored in
13 bits using 2's complement notation, while 4095 is the largest number which may be
stored in this manner.

In Table 2-40, change the tv character to EO and the description to:

EO is equivalent to the version of TECO which is currently being run. This manual
describes TECO version 5.

In the last line before Table 2-41, change 4096 to 8192.

In Table 2-41, under the - operator, change - 2=4096 to - 2=- 2.

21

Page

2-175

2-178

Addition/Correction

Replace figures 2-5 and 2-6 with the following:

Figure 2-5:

J!I! OUN OUS !
!<QNA-32"E 1% S $'!
!QNA-13"E OJUSTIFY$'!
!l%N$>!
!!JUSTIFY! QN-40"G!
!60-QN-QS<S $1 $S"N $>
!OL QS%N$ Q5%S$ OJUSTIFY$'!
!60-QN"G 60-QN<S $1 $S"N $>' , !
!L Z-. "G 01$'$$

Figure 2-6:

.R TECO
*ERDT Al :MACRO. TE$ Y HXI HK$$
*ERDTAI :TEXT.AS$ Y MI$$

Replace the example for SUPER TECO with:

.GET SYS TECO

.ODT
2051/74207610
2134/74507410
tc
.SA VE SYS STECO

Replace the current example of STECO (Super TECO) with the following example .

. RSTECO
*ERBBB:$EWDDD:JUNK.$$

*NABCDE$QLT$$

*D

*EF$$

*EWDEV:FILEN.EX$$

22

(WHERE BBB IS THE DEVICE WITH A LOST
FILE (EMPTY)). READ FROM BAD DEVICE BBB:
WRITE A FILE JUNK ON GOOD DEVICE DDD:

SEARCH FOR NEXT "ABC DE" THEN TYPE THE
LINE. MULTIPLE SEARCHES MAY NEED TO
BE MADE.

DELETE JUNK CHARACTERS FROM THE BE­
GINNING OF THE LINE PARTICULARLY A "Z.

CLOSE THE JUNK FILE.

OPEN A NEW FILE ON THE GOOD DEVICE
WITH THE PROPER FILE NAME.

Page

2-178 (cont.)

2-179

2-180

2-182, 183

2-184

Addition/Correction

*NUVWXYZ$PWEF$$

*EX$$

SEARCH FOR THE END OF THE FILE TEXT
"UVWXYZ" WRITING TO THE NEW FILE.

EXIT TO OS/8.

In the section on "Incompatibilities Between OS/8 TECO and DECsystem-l0 TECO,"
change incompatibility #1 to read as follows: "The AR command does not exist on
DECsystem-l0 TECO."

Step 6 - delete

Step 7 - delete the word "tv".

In Table 2-44, add the commands:

FS search for a character string in the current buffer and replace with another string.

FN search for a character string in a page of the input file which may not have been
read into the buffer, and replace with another string.

tv insert the specified character string into the text storage area of the Q-register.

In Table 2-44, under the heading POINTER POSITIONS, change the command mL to
nL.

In the section "Running TECO on the PDP-12" change all references to "tw" to "w"

Table 245, delete all and replace with: Table 2-45 on next 3 pages.

23

Table 2-45 Summary of TECO Error Messages

Print-out Printout
Abbreviation Message Meaning

?ARG IMPROPER ARGUMENTS Number missing before comma, or two
arguments specified to D, or three
numeric arguments

?BNI NOT AN ITERATION Iteration close (» without matching
open «)

?CCL CCL.SV NOT FOUND OR EG CCL not found or EG argument too
ARGUMENT TOO BIG long

?FER FILE ERROR FILE ERROR can mean:
1) input file not found on "ER" com-

mand
2) cannot enter output file on "EW" or

"EB" command
3) device specified for file does not

exist
4) "EB" command given on non-fIle

structured device

?FUL OUTPUT COMMAND WOULD HAVE Output command would have over-
flowed output file (panic mode)

?lEC ILLEGAL CHARACTER X* AFTER E E followed by an illegal character

?IFC ILLEGAL CHARACTER X* AFTER F F followed by an illegal character

?IFN ILLEGAL CHARACTER X*** IN FILE Illegal file name in "ER", "EW" or
NAME command

?ILL ILLEGAL COMMAND X* Illegal command

?lNP INPUT ERROR Parity error on input file

?IQC ILLEGAL CHARACTER X* " followed by an illegal command
AFTER" "

?IQN ILLEGAL Q REGISTER NAME X** Non-alphanumeric Q-register name

?MEM STORAGE CAPACITY EXCEEDED Text buffer overflow

?NAC NEGATIVE ARGUMENT TO, Negative argument to comma

?NAE NO ARGUMENT BEFORE = No numeric argument to the left of an
equal sign

(continued on next page)

24

Table 245 (cont.)

Printout Printout
Abbreviation Message Meaning

?NAP NEGATIVE OR ZERO ARGUMENT Negative or zero argument to P
TOP

?NAQ NO ARGUMENT BEFORE QUOTE No numeric argument to the left of a
quote

?NAS NEGATIVE OR ZERO ARGUMENT Negative or zero argument with a
TOS search

?NAU NO ARGUMENT BEFORE U No numeric argument to the left of a U

?NAY NUMERIC ARGUMENT TO Y Numeric argument specified with Y
command

?NFO VERSION NUMBER TO FILE FOR Attempt to output without opening an
OUTPUT output file

?NYI CASE SUPPORT NOT IMPLEMENTED Case support not implemented (use EO
for version)

?NYI CASE SUPPORT NOT IMPLEMENTED Case support not implemented (use W
for watch)

?OUT OUTPUT ERROR Output file too big or output parity
error

?PDO INTERNAL PUSHDOWN OVERFLOW Pushdown overflow (macros and itera-
tions nested too deeply)

?POP ATTEMPT TO MOVE POINTER OFF Attempt to move pointer outside of
PAGE text buffer

?QMO Q REGISTER MEMORY OVERFLOW Q-register storage overflow

?SNI NOT IN AN ITERATION Semicolon on command level

?SRH SEARCH FAILED Failing search at command level

?STL SEARCH STRING TOO LONG Search string too large (greater than 31
characters)

?UTC UNTERMINATED COMMAND Incomplete command (PDL not empty
at end of command string)

?UTM UNTERMINATED MACRO Incomplete command (PDI not empty
at end of macro)

?WLO CANNOT WRITE OUT ERROR MESSAGE Write locked system device
OVERLAY

(continued on next page)

25

Printout
Abbreviation

?XAB

?YCA

Page

2-184

Table 245 (cont.)

Printout
Message Meaning

Execution aborted

Y COMMAND ABORTED Y (or_:.J command aborted because data
would be lost

Addition/Correction

Add the following information about the DECtape Formatting and DECtape Copying
Programs at the end of Chapter 2.

DTFRMT
This program records the required timing and mark tracks on a DECtape mounted on the
TC01·TUSS unit or a TC08-TUS6 DECtape unit.

The program interacts with you via the terminal to obtain the necessary data for each set
of DECtapes to be formatted. As soon as one set of tapes is formatted, the program is
ready to format another set.

Two full passes are required to completely format each DECtape, and up to eight
DECtapes may be formatted at a time (assuming that the user has eight tape transports).
Upon completion of a cycle, new tapes may be mounted and formatted as the last, with a
minimum of operator-program communication.

PRELIMINARY REQUIREMENTS

Equipment

PDP-8, terminal, TC01-TUSS DECtape Control.

LOADING PROCEDURE

Load the program into core using the standard Binary Loader.

USING THE PROGRAM

Starting Procedure

a. Key 1000 into the SWITCH REGISTER. Depress LOAD ADDRESS and depress
START. "DTA?" is printed on the terminal.

Mount the DECtapes to be marked onto the tape transports, with just enough turns of
tape on the right hand reel of each transport to provide a grip. Make sure that no two
tape units are set to the same unit number. Set the RDMK-WRTM-NORMAL switch
located on the TC01 maintenance control panel to the WRTM position; for each trans­
port to be used, set the WRITE ENABLED-WRITE LOCK switch to WRITE ENABLED,
and the REMOTE-OFF-LOCAL switch to REMOTE.

26

Page

2·184(cont.)

Addition/Correction

Operating Procedures
The user type: R DTFRMT in response to the monitor dot (.). The program and
operator now converse. The printout "DTA?" is asking which DECtape units will be
used. The operator types a unit number or series of unit numbers, corresponding to the
DECtape units upon which he has mounted tapes. For instance, if the operator has
mounted tapes on units 2, 5, 7, and 8, he would type 2 5 7 8..J (where ..J Signifies
carriage return). Spaces are ignored, so it makes no difference if the operator types
spaces between the unit numbers. Only one speCification of a unit is significant, i.e.,
typing 2 2 5 7 7 5 8 2 8.j has the same effect as typing 2 5 7 8 _j •

Once the operator has specified the units he wishes to use, the program types
"DIRECT?". The operator responds by typing MARK ..J or MARK XXXX .). If he
types MARK ~ ~ the program assumes 2018 words, 27028 blocks (standard PDP·8
format). Otherwise, XXXX is accepted as a decimal number of words per block, and
must be divisible by 3. Note that typing MARK 384 ,../' will cause the program to
generate a standard PDP·lO format DECtape (11028 blocks of 6008 words, which is
equivalent to 11028 blocks of 2008 words, where each word is 36 bits rather than 12
bits).

The program now types "xxxx WORDS, YYYY BLOCKS OK? (YES OR NO)." This
serves as a final check for block count. XXXX and YYYY are octal values representing
the final outcome of a formula solved by the program, determining the number of blocks
that may be written on a DECtape knowing the number of words. If a NO ~ answer is
given, the program reverts to "DIRECT?". Otherwise (if YES.-'I), the tape on the first
unit specified begins to move.

Once all of the tapes specified have been marked, the printout "SET SWITCH TO
NORMAL" appears. Then the operator returns the "RDMK·WRTM·NORMAL" switch
to NORMAL, and strikes the RETURN key on the terminal, starting the second pass.
Note that during the second pass with multiple DECtape units, as soon as one tape stops
and the next tape starts, the first tape is completed and may be replaced with a fresh tape
in preparation for recycling.

The program continues by itself until completed, at which time the "DIRECT?" printout
occurs. Typing "SAME ~" repeats the entire process with the original constants. The
new DECtapes must be mounted and ready to write timing and mark tracks before
"SAME..J "is typed. Also, in response to "DIRECT?", typing "RDR..J" causes the
printout of the unit numbers of the DEC tapes and the last twelve block numbers;
"RDF.../ " causes the printout of the unit numbers and the first twelve block numbers;
and "RESTART ~ " returns the program to "DTA?". Unit numbers are printed as
"NOOO", where N is the unit number (0 means DECtape unit 8). Once formatting begins,
control C will cause the program to restart at "DTA?". If the user wishes to return to the
monitor another control C may be typed at this time.

Following are several examples of successful operation. The underlined portions are
printed by the program. ALL opefatore responses should be followed by a carriage
return.

27

Page

2-184 (cont.)

Addition/Correction

a. Create a standard tape on unit 4.

DTA?4
DIRECT? MARK
0201 WORDS, 2702 BLOCKS. OK? YES ORNO
YES
SET SWITCH TO NORMAL
DIRECT?

b. Create 16 standard PDP-l 0 format tapes - eight at a time, on units 1-8.

DTA? 12345678
DIRECT? MARK 384
0600 WORDS, 1102 BLOCKS OK? YES OR NO
YES
SET SWITCH TO NORMAL (USER TYPES ~)
DIRECT? SAME
SET SWITCH TO NORMAL (USER TYPES ..J)
DIRECT?

Errors

Errors Types to "DTA?" and "DIRECT?" - Revert back to "DTA?" or
"DIRECT?"

Error Messages for Response to MARK XXXX -

NOT DECIMAL
NOT DIVISIBLE BY 3
TOO MANY WORDS
TOO MANY BLOCKS

A character in XXXX is not 0-9.
XXXX cannot be divided evenly by 3.
The number of words plus 15 exceeds 77778,
The number of blocks generated by XXXX
exceeds 77778,

Error Messages for Response to YES (After message - revert back "DT A?")

SETUP? Indicates an error in the DEC tape setup -

Unit in WRITE LOCK
Nonselectable unit
Switch not in WRTM position

Error Messages for Marking and Verifying a Tape

XXXX SHOULD BE YYYY BLK ERROR PHASE X
XXXX SHOULD BE YYYY DATA ERROR PHASE X
END TAPE ERROR PHASE X
MARK TRACK ERROR PHASE X
PARITY ERROR PHASE X

28

Page

2-184 (cont.)

Addition/Correction

SELECT ERROR PHASE X
TIMING ERROR PHASE X
LAST INT NOT END ZONE

Recovery
Although error should cause doubt concerning the entire process, restarts may be made
by phases (except when in phase 0). Restart the phase by typing "RETRY ..J". Type
"RESTART" to return to "DTA?"

PHASE 0:
PHASE 1:
PHASE 2:
PHASE 3:

MARK TRACK WRITE
WRITING LAST REVERSE BLOCK NUMBER FORWARD
WRITING BLOCK NUMBERS AND DATA IN REVERSE
READING AND CHECKING BLOCK NUMBERS AND DATA

An error that should be considered catastrophic is LAST INT NOT END ZONE. This
indicates that between the last (or first) block number and the end zone, something
caused an interrupt (DTF).

The entire program may be restarted at 10008 any time.

DETAILS OF OPERATION AND STORAGE
The program writes timing and mark tracks on a DECtape, then inserts block numbers
and parity correct information, checking the results of all operations.

The number of block frames to be written is a function of the number of words per
block. The formula

blocks per tape = 212080 + 2
NW+15

where NW equals the number of words to be written, is used by the program to compute
the number of blocks, but is adjusted by the program to provide the standard PDP-8
format of 129 (12-bit) words, 1744 blocks, and standard PDP-10 format of 128 (36-bit)
words, 578 blocks.

Two full passes are required to mark and verify a tape.

Pass 1

Pass 2

Marks the tape forward, inserts block numbers and parity correct date
in reverse.
Reads and checks block numbers and data forward and reverse.

During the forward direction of the first pass, the TC01 is switched into WRITE TIMING
AND MARK TRACKS, CONTINUOUS MODE, FORWARD. The program manipulates
data to be written by monitoring the word count register and the DTF, (DECtape flag).
Initially, ten feet of end-zone code is written, and abutting the end zone are about two
standard block lengths of interblock sync. To the TCOl, this interblock sync acts as no
operation, but guarantees that at turn-around time, block 0 is read first (or 2701 if
turning out of the forward end zone). Now the remainder of the tape is written creating
block frames. The number of such frames is determined by the above formula. Upon
completion of the block framing; another extended interblock sync zone is written as
well as ten feet of end zone.

29

Page

2-184 (cont.)

Addition/Correction

Pass 1 forward is now complete (timing and mark tracks are written). The tape is
ordered to MOVE in reverse for three seconds, thus moving it out of the end zone and
onto the marked section. The tape is once again moved forward, and the last REVERSE
BLOCK NUMBER is written until the forward end zone is sensed. Now th,e tape is
turned out of the end zone in SEARCH, and the program waits for a block interrupt (first
reverse block number). When the DTF rises, the TCOI is switched into WRITE ALL,
CONTINUOUS, REVERSE; thus the system is synchronized and all block numbers and
data are written: until the forward end zone is sensed. This completes the marking and
blocking of the tape. Pass 2 in CONTINUOUS MODE checks the data and block numbers
to be certain they are correct. When multiple DECtape units are specified, Pass 1 forward
is completed for each tape before Pass 1 reverse is begun.

TDFRMT
The TD8-E DECtape formatter program records the timing and mark tracks on a
DECtape mounted on the TU56 DECtape transport.

The program interacts with the operator via the terminal to obtain the necessary data for
each set of DECtapes to be formatted. As soon as one set of tapes is formatted, the pro­
gram is ready to format another set.

Three full passes are required to completely format each DECtape, and up to two
DECtapes may be formatted at a time (units 0 and 1). Upon completion of a cycle, new
tapes may be mounted and formatted as the last, with a minimum of operator-program
communication. One tape excluding tape setup time, requires three minutes from start
to finish.

Mount the DECtapes to be marked onto the tape transports with just enough turns of
tape on the right hand reel of each transport to provide a grip. Make sure that no two
tape units are set to the same unit number. Set the switch on the TD8-E to WTM
position. For each transport to be used, set the WRITE-ENABLED-WRITE LOCK switch
to WRITE ENABLED, and the REMOTE-OFF-LOCAL switch to REMOTE.

OPERATING PROCEDURES
The user types .R TDFRMT in response to the monitor dot (.). The program and opera­
tor now converse. The printout "UNIT?" is asking which DECtape units will be used.
The operator types one or two unit numbers corresponding to the DEC tape units upon
which he has mounted tapes. For instance, if the operator has mounted tapes on units 0
and 1, he would type 0 1. Spaces are ignored, so it makes no difference if the operator
types spaces between the unit numbers. Only one specification of a unit is significant,
i.e., typing 000 III has the same effect as typing 01.

Once the operator has specified the unites) he wishes to use, the program types
"FORMAT?". The operator responds by typing MARK or MARK XXXX. If he types
MARK, the program assumes 201 words 2702 blocks (standard PDP-8 format). Other­
wise XXXX is accepted as a decimal number of words per block and must be divisible by
3. Note that typing MARK 384 will cause the program to generate standard PDP-I 0
format DECtapes (1102(8) blocks of 600 words, which is equivalent to 1102(8) blocks of
200 words where each word is 36 bits rather than 12 bits).

30

Page

2-184 (cont.)

Addition/Correction

The program now types "XXXX WORDS, YYYY BLOCKS OK? (YES OR NO)".
This serves as a final check for block count. XXXX and YYYY are octal values repre­
senting the final outcome of a formula solved by the program, determining the number
of blocks that may be written on DECtape knowing the number of words. If a no
answer is given, the program reverts to "FORMAT?". Otherwise (IF YES), the program
types out "SET SWITCH TO WTM". Then the operator hits carriage return on the tele­
type and the tape on first unit specified begins to move if the switch is set.

Once all of the tapes specified have been marked, the printout "SET SWITCH TO OFF"
appears, then the operator resets the WTM switch to off, and strikes the return key on the
terminal starting the second pass. Note that during the second pass with multiple
DECtape units, as soon as one tape stops and the next tape starts, the first tape is com­
pleted and may be replaced with a fresh tape in preparation for recycling.

The program continues by itself until completed at which time the "FORMAT" print­
out occurs. Typing "SAME<" repeats the entire process with the original constants.
The new DECtapes must be mounted and ready to write timing and mark tracks before a
carriage return is hit on the teletype after the typeout "SET SWITCH TO WTM". Also,
in response to "DIRECT?", typing "RDR" causes the printout of the unit number of the
DECtape and the last 22 block numbers; "RDF<" causes the printout of the unit number
and the first 22 block numbers; and "RESTART<" returns the program to "UNIT?".
Unit numbers are printed as "OOON" where N is the unit number.

Following are several examples of successful operation. The underlined statements are
printed by the program. All operator responses should be followed by a carriage return.

A. CREATE A STANDARD PDP-8 TAPE ON UNIT I

UNIT? 1
FORMAT? MARK
0201 WORDS, 2702 BLOCKS, OK? (YES OR NO)
YES
SET SWITCH TO WTM
SET SWITCH TO OFF
FORMAT?

B. CREATE 4 STANDARD PDP-I0 FORMAT TAPES, TWO AT A TIME ON
UNITS 011

UNIT? 01
FORMAT? MARK 384
0600 WORDS, 1102 BLOCKS OK? (YES OR NO)
YES
SET SWITCH TO WTM
SET SWITCH TO OFF
FORMAT? SAME
SET SWITCH TO WTM
SET SWITCH TO OFF
FORMAT?

31

Page

2-184 (cont.)

Addition/Correction

ERRORS
Errors typed to "UNIT" and "FORMAT" revert back to "UNIT?" or "FORMAT?".

Error messages for response to MARK XXXX

NOT DECIMAL A CHARACTER IN XXXX IS NOT 0-9
NOT DIVISIBLE BY 3
TOO MANY WORDS

XXXX CANNOT BE DIVIDED EVENLY BY 3
THE NUMBER OF WORDS PLUS 15 EXCEEDS
7777(8).

TOO MANY BLOCKS THE NUMBER OF BLOCKS GENERATED BY XXXX
EXCEEDS 7777

Error messages for response to "SET SWITCH TO WTM".

1. SETUP? indicates an error in the DECtape setup. One of the units speci­
fied is in write lock position, not selected, or the write flip-flop is
unable to be set, or there may be a timing error. (After message
revert back to "UNIT".)

2. Switch not set to WTM or single line flag failed to set. Set switch to WTM.

RECOVERY:

This type out says that either the switch on the M868 modules is
not set to the WTM position or the timing generator for writing
the mark and timing tracks is not setting the single line flag.

If the switch was not set to WTM position set the switch and hit
carriage return on the teletype.

If the switch was set to WTM position and this type out occurred,
try again or examine the timing generator circuit.

Error messages for marking and verifying a tape

PC XXXX MARK TRACK ERROR PHASE Y
PC XXXX BLOCK NUMBER ERROR PHASE Y
PC XXXX DATA ERROR PHASE Y
PC XXXX CHECKSUM ERROR PHASE Y
PC XXXX TIMING ERROR PHASE Y
PC XXXX WRITE ERROR PHASE Y

XXXX equals the program counter at time of the failure. Y equals the pass which it
was in.

32

Page

2-184 (cont.)

Addition/Correction

Although an error should cause doubt concerning the entire process, a restart may be
made (except in phase 0) by typing "RETRY<". Retry causes the program to go back to
phase 1, type "REST ART<" to return to "UNIT?,'.

PHASE 0:
PHASE 1:
PHASE 2:

PHASE 3:
PHASE 4:

PHASE 5:

WRITE TIMING AND MARK TRACK FORWARD
READS MARK TRACK REVERSE
WRITE DATA, FORWARD BLOCK AND REVERSE BLOCK
NUMBERS FORWARD AND WRITES THE CHECKSUMS
DISPLAYS BLOCK NUMBERS IN AC REVERSE
READS DATA, FORWARD BLOCK AND REVERSE BLOCK
NUMBERS FORWARD AND CALCULATES THE CHECKSUM
READS REVERSE BLOCK NUMBERS IN REVERSE

The entire program may be restarted at 0200 any time.

DETAILS OF OPERATION AND STORAGE
The program writes timing and mark track on a DECtape forward with WTM switch set.
Then it reads the mark track in the reverse direction with the switch set to off. The pro­
gram checks all of the mark track once it is in sync. (see flow figure 1) when it finishes
reading the mark track reverse, it bounces off the end zone and starts writing zeroes to
the first block mark. The program is now in sync. The program now continues writing
forward block numbers, reverse checksum, data, checksum, and reverse block numbers
for the rest of tape. When it sees the end zone, it turns around and starts displaying the
reverse block number in the accumulator until it hits the end zone again. Now the tape
turns around and starts reading and comparing all forward block numbers, reverse check­
sum, all data, checksum and reverse block numbers that was written in Phase 2. This
comparison is done on all blocks until the end zone is reached. The tape turns around in
the end zone and starts looking for reverse block numbers and comparing them all the
way down tape to the end zone. The formatting is now complete, the tape stops, and
"FORMAT" is typed out waiting for new directions.

The number of block frames to be written is a function of the number of words per block.

The formula

BLOCKS PER TAPE [(212080)/(NW+15)] +2

where NW equals the number of words to be written, is used by the program to compute
the number of blocks, but is adjusted by the program to provide the standard PDP-8
format of 129(10) (12-bit) words, 1474(10) blocks, and standard PDP-10 format of
128(10) (36-bit) words, 578(10) blocks.

Theory

The writing of the mark track is done through AC bits 0, 3, 6 and 9. The following
description is how the mark track is written.

33

Page

2-184 (cont.)

Addition/Correction

A. Install the tape with enough turns to create a pull. The reverse end zone requires a
sequence of three data words for its pattern.

4044
0440
4404

In the mark track the words appear at 101101101101101 (5555(8)). The reverse
end zone should cover about 10 feet of tape. Write the above three words 4096(10)
times.

B. Write the below three words (see C) or expand code 99 times.

C. Expand code, three words of expand code should immediately follow each block,

0404
0404
0404

In the mark track the words appear as 010101010101 (2525(8)).

D. The forward block mark and reverse guard require three words.

0404
4004
4040

Which appear on the mark track as 010110011010 (2632(8)).

E. The lock mark, reverse checksum, reverse final, reverse prefinal consist of six PDP-8
memory words,

0040
0000
4000
0040
0000
4000

These words appear on the mark track as 001000001000001000001000
(10101010(8)).

F. Mark track code for data is generated by

4440
0044
4000

These three words appear as 111000111000(7070(8)) and are repeated 41(10)
times for a 129 word block.

34

Page

2-184 (cont.)

Addition/Correction

G. The prefinal, final, checksum, and reverse lock consist of six PDP-8 words.

4440
4444
4044
4440
4444
4044

These words appear on the mark track as 111011111011111011111011
(73737373(8)).

H. The guard and reverse block mark consist of three words

4040
0440
0404

which appear as 101001100101 (5145(8)).

I. Generate 2702(8) block patterns. Repeat C through H. 2702(8) times.

J. 100 expand codes (see C).

K. The end zone pattern consist of three words,

0400
4004
0040

which appears on the mark track as 010010010010 (2222(8)). Repeat these 3 words
4096(10) times. See Figure 2 for a diagram of the mark track and data tracks.

DTCOPY
The TC01, TC08, TU-55 Copy Program is controlled through a dialog on the terminal.
The responses to the questions are in the form of octal numbers followed by a carriage
return. Where more than one answer is required to a question, the answers are separated
by semicolons. Alphabetic or other illegal characters will cause an error message to be
generated and the question to be repeated. If too many digits are typed for the response
expected, only the last ones typed will be used. If the response was to be either 0 or 1
(yES or NO), a non-zero final digit will be assumed to be 1.

Before answering the dialog's questions, the user must ensure that all the DECtapes
involved are mounted on their respective drives. All the drives must be set to REMOTE.
The input drive may be set to WRITE LOCK or WRITE ENABLE; all output drives
must be set to WRITE ENABLE. No two drives may have the same unit number.

The user types R DTCOPY in response to the monitor dot (.). The program types
DECtape COPYV10A.

35

Page

2-184 (cont.)

Addition/Correction

For each set of copies, the dialog is as follows (the user's response is underlined; (CR)
means carriage return):

DECTAPE COPY VI0A
FROM UNIT.Q

TOUNIT~

FIRST BLOCK TO COPY (OCTAL) Q

FINAL BLOCK TO COpy (OCTAL) 700

PDP-8 WORDS PER BLOCK 0201

VERIFY OUTPUT? (O=YES, 1 =NO): Q

When all specified copies have been finished, the tapes are rewound and the dialog
continues:

DONE
DECTAPE COPY VI0A
FROM UNIT

The user may return to the monitor by typing CTRL/C at anytime. (Control characters
are not echoed printed.)

ERROR MESSAGES

ILLEGAL RESPONSE The user's response to the dialog was not correct; for
example, an alphabetic character was typed or carriage
return was typed before an octal number was given where
one was required. The question will be restated and any
previous answer ignored. Nothing should be typed until the
terminal has stopped prin ting.

SELECT ERROR UNIT n During attempted data transfer, unit n was not found. The
program waits for the user to correct the cause of the error.
The user should check to see that:

1. if unit n is an output drive, it is set to WRITE
ENABLE.

2. unit n is set to REMOTE.
3. there is only one unit n.
4. all units are set to numbers appropriate to their

TD8E internal wiring.
When the cause of the error has been corrected, the user
may type CTRL/R to resume transfer or he may type
CTRLjS to restart the dialog.

36

Page

2-184 (cont.)

Addition/Correction

T APE ERROR BLOCK x UNIT n
During attempted transfer, a parity error or timing error
was detected, or too great a block number was requested
near block x on the tape on unit n. The tapes are rewound
and the dialog is automatically restarted at DONE,
REPEAT (YES=-1, NO=O).

VERIFY ERROR BLOCK x UNIT n

ILLEGAL FORMAT UNIT n

TDCOPY

The data on the input tape does not match the data which
was written on block x of the output tape on unit n. The
user may type CTRL/R to ignore the error and continue
with the transfer, CTRL/T to try the last transfer again and
continue if the error does not recur, or CTRL/S to restart
the dialog.

Either the number of words per block on unit n does not
agree with the number of words per block on the input unit
or, when the number of blocks on the tape was calculated
from the block length of the input tape, the length was
found to be illegal. The number of blocks is only calcu­
lated if the whole tape copy option is requested. In either
case, when the error has been corrected, the user may type
CTRL/R to check the formats of all tapes again and con­
tinue, or CTRL/S to restart the dialog.

TD8E Copy is controlled through a dialog on the terminal. The response to the questions
are in the form of octal numbers followed by a carriage return. Where more than one
answer is required to a question, the answers are separated by semicolons. Alphabetic or
other illegal characters will cause an error message to be generated and the question to be
repeated. If too many digits are typed for the response expected, only the last ones
typed will be used. If the response was to be either 0 or 1 (YES or NO), a non-zero final
digit will be assumed to be 1.

Before answering the dialog's questions, the user must ensure that all the DECtapes
involved are mounted on their respective drives. All the drives must be set to REMOTE.
The input drive may be set to WRITE LOCK or WRITE ENABLE; all output drives must
be set to WRITE ENABLE. No two drives may have the same unit number.

The user types R TDCOPY in response to the monitor dot(.). The program prints:

TD8E COPYV4A
HIGHEST FIELD AVAILABLE:

The user response with the number of the highest field he wishes used for buffer space.
This response may allow data to be preserved in any higher field or may make full use of
the memory available. This question is asked only once, immediately after the program
has been loaded. To change the response, the program must be executed again. If 4K of
memory is to be used, the response is 0; if 8K, the response is 1, and so forth.

37

Page

2-184 (cont.)

"Addition/Correction

For each set of copies, the dialog is as follows (the user's response is underlined; (CR)
means carriage return):

Dialog Comments

FROM UNIT: 0 (CR) User may specify one unit number.

TO UNITS: 1; 2; 3; 4; 5; 6; 7 (CR) User may specify up to 7 unit numbers, separated
by semicolons.

FIRST INPUT BLOCK: 100 (CR) User may supply any legal DECtape block number.

FIRST OUTPUT BLOCK: 200 (CR) User may supply any legal DECtape block number.

NUMBER OF BLOCKS TO COPY: 50 (CR)
User may supply appropriate number of blocks.

VERIFY OUTPUT (YES=1, NO=O): 1 (CR)

0201 12-BIT WORDS PER BLOCK Determined by program from tape on input unit.

The block length of all the specified tapes is checked. If any are found to be different
from the input tape, the ILLEGAL FORMAT UNIT n error message is generated.

When all specified copies have been finished, the tapes are rewound and the dialog
continues:

DONE

REPEAT (YES=!, NO=O):

If there are more tapes to be copied with the same set of specifications, they should be
placed on the drives before typing 1 to repeat the previous operation. If a different set of

. specifications is desired, 0 should be typed to restart the dialog.

Occasionally a TD8E drive will not stop fast enough after the tapes have been rewound
and the end of the tape will spin off the reel. If this should happen, the drive may be
stopped manually by setting it to OFF and stopping the reel by hand. This will not affect
the validity of the copy. If the dialog does not continue properly after one or more tapes
have spun off, the program may be restarted.

In response to any question in the dialog, the user may type either CTRL/S to restart the
dialog at REPEAT (YES=!, NO=O) or CTRL/C to exit the monitor. Either CTRL/S or
CTRL/C may also be typed during a small amount of further motion. If CTRL/S is typed
during the dialog the response to the REPEAT question should be NO; this option is
mainly for cases where a complete set of specifications is already available.

(CTRL/ characters are typed by holding the CONTROL key down while typing the char­
acter. The procedure is similar to that used with the SHIFT key on a typewriter. CTRL/
characters are not echoed (printed).)

38

Page

2-184 (cont.)

Addition/Correction

A special case of the dialog allows the entire input tape to be copied onto the output tape
with a minimum of effort. This case eliminates the need to specify the starting block
numbers and number of blocks to copy. In this case, the answer to FIRST INPUT
BLOCK: is only a carriage return. The shortened dialog will be as follows:

TD8ECOPY
FROM UNIT: 0 (CR)
TO UNITS: 1 ;2;3;4;5;6;7 (CR)
FIRST INPUT BLOCK: (CR)
VERIFY OUTPUT (YES=I, NO=O): 1 (CR)
0201 12-BIT WORDS PER BLOCK --

The preceding sample dialog will cause the entire tape on unit 0 to be copied onto the
other 7 tapes and verified.

ERROR MESSAGES

ILLEGAL RESPONSE The user's response to the dialog was not correct; for
example, an alphabetic character was typed or carriage
return was typed before an octal number was given where
one was required. The questions will be restated and any
previous answer ignored. Nothing should be typed until
the terminal has stopped printing.

SELECT ERROR UNIT n During attempted data transfer, unit n was not found.
The program waits for the user to correct the cause of the
error. The user should check to see that:

1. if unit n is an output drive, it is set to WRITE
ENABLE.

2. unit n is set to REMOTE.
3. there is only one unit n.
4. all units are set to numbers appropriate to their

TD8E internal wiring.

When the cause of the error has been corrected, the user
may type CTRL/R to resume transfer or he may type
CTRL/S to restart the dialog.

T APE ERROR BLOCK x UNIT n
During attempted transfer, a parity error or timing error
was detected, or too great a block number was requested
near block x on the tape on unit n. The tapes are rewound
and the dialog is automatically restarted at DONE,
REPEAT (YES=I, NO=O).

VERIFY ERROR BLOCK x UNIT n
The data on the input tape does not match the data which
was written on the block x of the output tape on unit n.

39

~'"-------.------

Page

2-184 (cont.)

ILLEGAL FORMAT UNIT n

DETAILS OF OPERATION

Addition/Correction

The user may type CTRL/R to ignore the error and con­
tinue with the transfer, CTRL/T to try the last transfer
again and continue if the error does not recur, or CTRL/S
to restart the dialog.

Either the number of words per block on unit n does not
agree with the number of words per block on the input
unit or, when the number of blocks on the tape was calcu­
lated from the block length of the input tape, the length
was found to be illegal. The number of blocks is only cal­
culated if the whole tape copy option is requested. In
either case, when the error has been corrected, the user may
type CTRL/R to check the formats of all tapes again and
continue, or CTRL/S to restart the dialog.

After the answers to the dialog have been stored, the following procedure is used:

1. The number of words per block is determined from the input tape. All output
tapes are checked to see if they have the same format as the input tape. If the
shortened dialog option was used, the number of blocks on the tape is deter­
mined using the formula:

of blocks = (636,160/(words per block + 17)) + 2 (octal)

or

of blocks = (212,080/(words per block + 15)) + 2 (decimal)

2. The response to the VERIFY question is checked. The copying loop is set up
to verify or not, as was requested.

3. The loop is entered which copies the input tape, using the same set of specifica­
tions for each output tape.

a. The buffers are filled from the input tape.
b. All output tapes are written with the contents of the buffers.
c. If verification was requested, a separate set of buffers is filled from the

output tape and the two sets of buffers are compared. If there are any
discrepancies a VERIFY ERROR has occurred.

d. If more blocks remain to be copied, the loop is entered again.

4. When all the specified blocks have been copied onto the output tapes, all the
tapes are rewound.

5. The REPEAT option is offered.

40

Page

2-184 (cont.)

Addition/Correction

The number of fields to be used for buffer space is determined immediately after loading.
As soon as the question has been answered, it is removed from the program.

If the output tape is to be verified, each available field, including that part of field 0 not
occupied by the program, is divided in half. The lower half is used as the input and out­
put buffer; the upper half is used for verification. The output tape is read back into the
upper half and the two halves are compared. If they are not identical, a VERIFY
ERROR has occurred.

41

-

Page

3-29

3-30

3-31

3-41

CHAPTER 3

ADDITIONS AND CHANGES

Addition/Correction

End-Of-File paragraph should read:

End-Of-File
PAUSE signals the assembler to stop processing the file being read. A PAUSE should only
be used at the physical end of a ftle and with two or more segments of one program.
When a PAUSE statement is reached, the remainder of the ftle is ignored and processing
continues with the next input ftle. In such a case PAUSE must be present or aPH error
will occur. The PAUSE pseudo-op is present mainly for compatability with paper tape
assemblers, and its use is optional.

After the TEXT string example change the words "IF option" to "/F option".

The second sentence in the second paragraph under "Suppressing the Listing" should
read "XLIST may also be used with expression as an argument; a listing will be inhibited
if the expression is not equal to zero, or allowed if the expression is equal to zero" .

Insert the following example just before the section entitled "Controlling Binary
Output":

IFZERO A<

(code)

> ...

Under "Memory Reference Instructions" change "JSM" to "JMS".

43

~~-----.. ---
41M

Page

5-22

CHAPTER 5

ADDITIONS AND CHANGES

Addition/Correction

Add the following note on RALF assembly at the end of the page:

"RALF code that includes forward reference to the base page should employ pseudo-ops
and' as the first character of the symbol; this permits RALF to generate symbols that
do not conflict with programmer-generated symbols that are also on the base page. The
pseudo-op can also be used following..FPP memory reference instructions to indicate
use of the 2-word form of the instruction. Likewise, the ' pseudo-op indicates use of
the single-word direct form of the instruction.

45

Page

6-35

6-61

6-64

6-66

CHAPTER 6

ADDITIONS AND CHANGES

Addition/Correction

Randomize example (bottom of page) is incorrect.

1 PRINT" A"

should be added as the first line.

In the paragraph above the section entitled "File Statements" change "PS/8" to "OS/8"
and change the order number of the manual to "DEC-S8-0SSMB-A-D".

The last sentence in the first paragraph should read: the subsequent reading of numbers
from the file in line number 80 shows the use of a dummy argument (C) to compensate
for the carriage return and line feed since they would otherwise be read as numeric data
with a value ofO. Line 80 in the example should be: 80 INPUT #1:J,C.

Add the following option designations (bottom of page):

IC In BCOMP, the /C option is used in conjunction with the /K option to create
a file that can be chained to from a non-BASIC file. For example:

.RBCOMP
*EXAM.BA/C/K

IV In BCOMP, the /V option is used to obtain the current version number ofCOMP,
BLOAD, and BRTS. For example:

.RBCOMP
*EXAM.BA/V

This causes the system to print at the console the current version numbers for
BCOMP, BLOAD, and BRTS as part of the output of the file being compiled.

47

Page

6-69

6-76

6-83

Addition/Correction

Change the sentence preceding NOTES to:

In general, any departure from these procedures will cause a CX error.

Add the following to the List of CHAIN restrictions:

3. When chaining BASIC core image mes, the program being chained to must
be on the system device. This is a restriction of the USR CHAIN function.

Under the title THE STRING ACCUMULATOR (SAC), and starting on line 4, delete
the sentence:

The SAC starts at location SAC for 36 words (72 characters), and the length of the
string currently in the SAC is stored as a negative number in STRLEN.

and insert the following:

The SAC starts at location SAC in BRTS. The SAC is 80 words long and contains one
6-bit character per word. The length is stored as a negative number in SACLEN.

In the middle of the page, delete:

BRTS maintains links for FGET and FPUT on page ° of field 0, providing convenient
access to these frequently used routines.

Page 0
Link Name

FGETL
FPUTL

and insert the following:

Routine Linked

FFGET
FFPUT

BRTS contains Page Zero literals used by the FGET and FPUT routines. These Page Zero
literals can be found in the BRTS source listing. Page Zero literals reference the following
routines. For more infonnation on Page Zero literals, refer to the section on BRTS
Subroutines.

Page Zero Link

FNEGL
FNORL
FCLR

48

Routine

FFNEG
FFNOR
FACCLR

Page

6-85 (cont.)

6-90

6-108

6-117

6-118

6-119

Addition/Correction

In the middle of the page under the title FLOATING POINT OPERATIONS, and in
the second paragraph, delete:

Page 0 links are maintained for negate, nonnalize, and clear.

Page 0 Link

FNEGL
FNORL
FCLR

Routine

FFNEG
FFNOR
FACCLR

At the bottom of the page before the title SUBROUTINE ARGPRE, insert the following:

Many routines are now addressed with Page Zero literals that can be found in the
BRTS source listing. Note that explicit references to Page Zero pointers by name
no longer apply. The purpose is to shorten the size of the BRTS symbol table.

Towards the bottom half of the page, delete the section entitled SUBROUTINE BSW.

In the example form for the CHAIN command (Table 6-1) the device and file name
specification must be enclosed in quotation marks as follows:

CHAIN "dev:ftlename.ex"

In Table 6-3 Run-Time Diagnostics after the CI diagnostic code, insert the following:

CX Incompatible file extensions were used in BASIC CHAIN statement.

At the bottom of the page following the first paragraph, delete the column entitled
"Distributed on:"

At the bottom of the page following the first paragraph, delete:

BASIC.BN Binary for editor
BCOMP.BN Compiler binary
BLOAD.BN Loader binary
BRTS.BN Run-time system binary (any PDP-8 or PDP-12)

At the top of the page following BLOAD.SY, insert the following:

EABRTS.SV KE8/EAE Version of Run-time System save image

At the top of the page under the column entitled "Component" that describes
BRTS.SY, delete:

(from BRTS.BN)

49

Page

6-119 (cont.)

Addition/Correction

In the middle of the page, delete:

Making SAVE Images from Binary Files:
To create SAVE images of each of the OS/8 BASIC binaries, perform the following
OS/8 commands.

and insert the following:

Making SAVE Images from Binary Files:
To create SAVE images for each of the OS/8 BASIC binaries, use the following BUILD
procedure for OS/8 BASIC non-EAE.

In the middle of the page delete:

1. For the editor:

.RABSLDR
*DEV:BASIC.BN$
.SAVE SYS:BASIC;3011

and insert the following:

1. For the editor:

.PAL BASIC

.LOADBASIC

.SAVE SYS:BASIC;3211

Towards the bottom of the page, delete:

2. For the compiler:

.RABSLDR
*DEV:BCOMP.BN$
.SA VE SYS :BCOMP;7000

and insert the following:

2. For the compiler:

.PALBCOMP

.LOADBCOMP

.SA VE SYS :BCOMP;7000

50

Page

6-119 (cont.)

Addition/Correction

at the bottom of the page, delete:

3. For the loader:

.RABSLDR
*DEV:BLOAD.BN$
.SAVE SYS:BLOAD;7605

and insert the following:

3. For the loader:

.PALBLOAD

.LOADBLOAD

.SAVE SYS:BLOAD;7605

At th~ bottom of the page, delete:

4. For the run-time system:

.RABSLDR
*DEV:BRTS BN$ (without KE8/E EAE option)

or
*DEV :BRTS.BN ,DEV :EAEOVR.BN$

and insert the following:

4. For the run-time system:

.PALBRTS/W

.LOADBRTS

(PDP-8/E, PDP-8M or
PDP-8F with KE-8E EAE)

.SAVE SYS :BRTS 0-6777 ;7605

.SAVE SYS:BASIC.AF 34004577;7605

.SA VE SYS :BASIC .SF 12000-13177;7605

.SAVE SYS:BASIC.FF 13400-14577;7605

Append the following at the end of the page

Making SAVE Images from Binary Files:
To create SAVE images of each of the OS/8 BASIC binaries, use the following
BUILD procedure for OS/8 BASIC EAE.

51

Page

6-119 (cont.)

6-120

Addition/Correction

1. For the editor:

.RPAL8
*DEV:BASIC.BN<DEV:BASIC.PA
.RABSLDR
*DEV:BASIC.BN$
.SAVE SYS:BASIC;3211

2. For the compiler:

.RPAL8
* DEV :BCOMP .BN<DEV : BCOMP .PA
.RABSLDR
*DEV:BCOMP.BN$

.SAVE SYS:BCOMP;7000

3. For the loader:

.RPAL8
* DEV :BLOAD .BN<DEV :BLOAD .PA
.RABSLDR
*DEV:BLOAD.BN$
. SAVE SYS:BLOAD;7605

4. For the run-time system:

.. :RPAL8
* DEV :EARBRTS.BN<TTY: ,SYS :BRTS.PA/W

(pause)
EAE=1
tz

(pause)
tz
.RABSLDR
* DEV :EABRTS.BN$
. SAVE SYS:BRTS 0-6777;7605
.SAVE SYS:BASIC.AF 3400-4577;7605
.SAVE SYS:BASIC.SF 12000-13177;7605
.SAVE SYS:BASIC.FF 13400-14577;7605

At the top of the page on lines 1,2,3, and 4, append the following:

;7605

52

Page

6-120 (cont.)

6-121

Addition/Correction

In the middle of the page under the column entitled "Name", delete all the .03
extensions and replace them with the following extension:

.PA

In the middle of the page, following "The OS/8 BASIC sources are named as follows":
delete "NAME.MM" and the sentence "where MM represents the version number."

At the bottom half of the page change the .03 extensions on the input files to .P A.

At the top of the page, delete:

To assemble for PDP-12, PDP-8, PDP-8/I or PDP-8/L, or PDP-8E without EAE, create a
source file named NOEAE.PA with EDIT that works as follows:

Then

EAE=O
PAUSE

.RPAL8
* DEV :BRTS.BN<DEV :NOEAE,DEV :BRTS.03/K

To assemble the run-time system overlay for PDP-8E, PDP-8F or PDP-8/M with
KE-8/E EAE option, prepare a file called EAE.PA that looks as follows:

Then:

EAE=l
PDP8E=1
PAUSE

.RPAL8
*DEV :EAEOVR.BN<DEV :EAE,DEV: BRTS.03/K

and insert the following:

To assemble for PDP-12, PDP-8, PDP-8/I or PDP-8/L, or PDP-8E without EAE, type
the following command:

.RPAL8
*DEV:BRTS.BN DEV:BRTS.PA/W

53

Page

6-121 (cont.)

6-126

6-127

Addition/Correction

In the example command lines for PAL8, change the extensions ".03" to ".PA".

In the list of addresses, change "01566/**** 3541" to "01566/**** 3542" and change
"01567 /**** 3521" to "01567 /**** 3522".

In command line 11 (top of page), change "ADH(N)" to "ADC(N)".

54

Page

7-1

7-13

7-18

744

CHAPTER 7

ADDITIONS AND CHANGES

Addition/Correction

After "Calling and Using the OS/8 FORTRAN Compiler", insert the following:

Before calling the FORTRAN compiler, make sure that LIB8.RL is on the system device.

In the paragraph "Zero raised to a power ... " change the sentence "A negative
number ... " to read as follows:

A negative number raised to a floating point power causes an error message and uses the
absolute value; calculation continues.

Change the example of an implied DO LOOP from "WRITE (1,100) I, (A(J,I)J=1,3)"
to "WRITE (1,1 OO)I,(A(J ,I),J=1,3 ").

In the section on "DECTAPE I/O ROUTINES", add a note that the RT APE and WT APE
are for TC08 DECtapes only.

55

¥_ N

Page

8-10

8-29

8-37

8-62

8-66

8-80

CHAPTER 8

ADDITIONS AND CHANGES

Addi tion/ Correction

In the paragraph after the example command line, change "(terminated by a carriage
return)" to "(terminated by a carriage return or altmode)".

Add the following to Table 8-6:

EX The symbol is referenced but not defined.

ME Multiple Entry. The symbol is multiply defined.

MS

*

Multiple Section. A section is multiply defined.

The symbol is referenced illegally. Generally this symbol is an overlay and is
either referenced as data from another overlay (only CALL references are allowed)
or called from the same or a higher-number overlay level, violating the overlay
rules defined on page 8-22.

Add the following restriction to the first paragraph (concerning error traceback):

When a statement is reached through any form of GOTO, the line number for error
traceback is not reset. Thus, an error in such a line will give the number of the last
executed line in the error traceback.

In the section "NCHANL =", change "(8 images)" to "(FUNCTN=8)".

In the example FORTRAN IV Coding Form, change "TYPE 105,1" to
"WRITE (4,105) I".

In the second paragraph, change "An integer variable which ... " to
"A variable that ... ".

57

Page

8-81

8-83

8-88

8-91

8-98

8-100

8-106

8-107

8-112

Addition/Correction

Change the first two lines of the section "Computed GO TO Statement" to read:

Form GO TO(n 1 ,n2, , nK),e

A comma must follow the right parenthesis.

Add the following information to the section entitled "Arithmetic IF Statement":

Logical expressions may be usedin an arithmetic IF statement. In such a case, the logical
expression is first converted to an integer.

At the top of the page in the section on PAUSE STATEMENT, under Effect, change the
second sentence as follows:

Execution is suspended until the user types a character on the console.

Change "FORMAT (F7 .2,3(12,2(13 ,E9 .3)17))" to
"FORMAT (F7.2,3(I2,2(13,E9.3),I7))"

In the last example on the page, note that the first character output after the colon is a
"space" .

Lower third of page, change "Where a is an integer constant or variable name that is ... "
to "Where a is an integer constant or integer variable .. ".

In the first full paragraph, which begins "A direct access WRITE statement ... ", add the
following sentence before the words "For example:": "This means minimum record
size is one block."

In the first example, change "WRITE (8) X" to "WRITE (6) X".

Change all references (under FORTRAN) to the maximum size of ARRAYS from
"4096" to "4095".

Under the section entitled "THE DATA STATEMENT", change "DATA var listl/vallistl/
var list2/vallist2/, ... " to "DATA var listl/vallist1/, var list2/vallist2/, ... ".

58

Page

8-112 (cont.)

8-113

8-125

8-127

8-129

8-138

Addition/Correction

Change the second paragraph from the bottom to read:

Elements in the variable list may be either single subscripted or unsubscripted variables,
or the name of an entire array.

Change example line "DATA A(1),A(2),A(3),/3*0./" to
"DATA A(I),A(2),A(3)/3*0./"

The middle paragraph, which begins "PDP-12 users ... " should be changed to begin
"PDP-8 and PDP-12 users ... ".

In the example at the top of the page, after "LVL OVLY LENGTH", change
"000 10270" to "000 10371".

After the second sentence, insert the following:

A minimum of 12K of memory is required for the plotting routines.

In the description for "L" under the subject CALL PSCALE (A,L,N,I), change
"greater than or equal to 1" to:

... greater than or equal to 2.

59

-

Page

E-10

E-31

F-1

G-4

H-1

APPENDICES E-H

ADDITIONS AND CHANGES

Addition/Correction

Insert the following message after the CORE? message:

CX BCOMP Incompatible file extensions were used in
BASIC CHAIN statement.

After the error message "SL" add the following:

?SLOTS BUILD More than 8 groups of non-system handlers have been
inserted.

Add the following to the table:

.CM Indirect file used by CCL.

Insert the following sentence at the end of the paragraph in the section entitled
"MAGNETIC TAPE".

Normal use of magnetic tape by OS/8 V3 involves reading and writing records of
128 words.

At the end of page, insert the following information:

NULL HANDLER

The. NULL handler is included in the source of RF, the nonsystem RF08 handler, only
because there was extra room there. It has nothing to do with RF08's. These handlers
share space since there is a limitation on the number of handler slots available in as/8.
NULL is very useful when debugging a program with voluminous output which you do
not need. On output, NULL ignores data sent to it. On input, NULL returns an
immediate end-of-file.

In the table under program, change "POTP" to "FOTP".

61

Page

H-2

Addition/Corre"ction

Add to the table:

HANDLERS Run RESORC with the /E option.

BCOMP /V to . R BCOMP

BLOAD

BRTS

/V to . R BCOMP

/V to . R BCOMP

62

APPENDIX I

RXCOPY PROGRAM

The RXCOPY program is used to copy or transfer the entire contents and system head of one RX floppy disk to
another RX floppy disk. This program can be used only with RX permanent device names or a user defined name
that has been assigned to an RX device. Specification of filenames in the I/O specification line results in an error
message and, therefore, is not permitted.

The following command and I/O specification line will load and run RXCOPY under OS/8:

..:..RRXCOPY
!output dev:<input dev:/options

Example:

..:..RRXCOPY
!RXAI :<SYS:

When RXCOPY is loaded and the I/O specification line is entered at the keyboard, the input device is copied to the
output device on a sector by sector basis. When the operation is complete, the Monitor dot is printed on the screen
and the specified output device becomes an exact duplicate of the input device.

Table 1·1 lists the options available for use with the RXCOPY program. These options modify the RXCOPY
operation.

Table 1·1 RXCOPY Options

Option Meaning

/P Pause and wait for user response before and after execution of RXCOPY program.

/N Copy the contents of one device to another but don't check them for identical
contents unless otherwise specified.

/M Check both devices for identical contents and list the tracks and sectors that do not
match but do not perform a transfer unless otherwise specified.

/R Read every block on the specified device and list the bad tracks and sectors but do not
perform a transfer unless otherwise specified.

/V Print the current version number of the RXCOPY program.

If no options are specified, RXCOPY assumes both the /N and /M options.

If an error occurs during the execution of RXCOPY, the current job is aborted and control returns to the Monitor.

Table 1·2 lists the RXCOPY error messages and their meanings.

63

--_._-------------;;;

Table 1-2 RXCOPY Error Messages

Message Meaning

NO INPUT DEVICE No input device is specified.

CAN'T LOAD INPUT DEVICE The name of the input device specified in the command line is not a
permanent device name.

CAN'T LOAD OUTPUT DEVICE The name of the output device specified in the command line is
not a permanent device name.

COMPARE ERROR When using the 1M option all the areas that do not match are
printed as COMPARE ERRORS. Since this is an non-fatal error,
the RXCOPY operation continues.

INPUT DEVICE READ ERROR Bad input, bad tracks or sectors. Since this is an non-fatal error,
the RXCOPY operation continues.

OUTPUT DEVICE READ ERROR Bad data on output device, tracks and sectors bad. Since this is
an non-fatal error, the RXCOPY operation continues.

OUTPUT DEVICE WRITE ERROR Fatal output error. Since this is an non-fatal error, the RXCOPY
operation continues.

64

APPENDIX J

SET PROGRAM

The SET program permits the operating characteristics of OS/8 to be modified, according to the attributes that are
specified. The SET program is used to make frequently-required standard changes to system programs, especially
I/O handlers. These changes are identified by specifying certain attributes in the SET command string which has the
following format:

.:..RSET
itSET device [NO] attribute [argument]

where:

SET

device

[NO]

attribute

[argument]

is the operation to be performed.

indicates the handler of the device you want modified.

indicates that the attribute specified does not apply. [NO] cannot be used with every
attribute.

is the characteristic to be modified. (See Table 1-1.)

is an optional parameter that the user must supply for certain SET commands.

SET error messages are listed in Table 1-2.

Table J-1 SET Command Attributes

TTY Card Reader Mag Tape SYS LPT Any Device

ARROW CODEn PARITY x INIT xxxxx LA78 FILES
CODEn FILES OS8 LA8A DVCODE
COLn OS78 LC LOCATION n=m
ECHO LV8E READONLY
ESCAPE WIDTHn VERSION x
FILL BLOCK b
FLAG
HEIGHTm
LC
PAGE
PAUSEn
SCOPE
TAB
WIDTHn

6S

Table J-2 SET Error Messages

? SYNTAX ERROR
Incorrect format used in SET command or NO specified when not allowed.

? UNKi"lOWN ATTRIBUTE FOR DEVICE dev
An illegal attribute was specified for the given device.

? CAN'T - DEVICE IS RESIDENT
No modifications are allowed to the system handler.

? CAN'T - OBSOLETE HANDLER
The handler has an old version number.

? CAN'T - UNKNOWN VERSION OF THIS HANDLER
The version of the handler is not one recognized, possibly because it is a newer version.

? ILLEGAL WIDTH
A width of 0 or a width too large was specified? or for the TTY, a width of 128 or one not a
multiple of 8 was specified.

? NUMBER TOO BIG
The number specified was out of range.

? CAN'T - DEVICE DOESN'T EXIST
A nonexistent device was referenced.

? I/O ERROR ON SYS:

J.l TERMINAL ATTRIBUTES

J.1.1 Arrow
Specifying this attribute causes each control character typed by the KL8E handler to be printed in the form:

tx

where:

t indicates that a control character is being typed, and

x specifies which control character is being typed (100 + code for control character).

Format:

.!.SET TTY [NO] ARROW

Example:

.!,.SET TTY ARROW

If a CTRL/E character is typed, by the KL8E handler, an tE is printed on the terminal. Note that ARROW is the
default.

66

Using this attribute with the NO modifier causes each control character typed by the KL8E handler to print with
no modification.

Example:

~SET TTY NO ARROW

Now if a CTRL/E character is typed by the KL8E handler, it will actually send a CTRL/E (ASCII code 5) to the
terminal. The result is that no character is printed.

1.1.2 CODE n

NOTE
On some terminals, the arrow (t) is replaced by the
circumflex C).

where n is an octal number in the range

1 ~n ~77

This command changes the internal lOT code for keyboard to n. The internal device code for the teleprinter is set
to n+ 1. For example, if you have a VT05 hooked to your system with device codes of 40 and 41, you would say
SET TTY CODE 40. The NO restriction is not permitted.

Example:

.SET TTY CODE = 3

1.1.3 COLumn n
Specifying this attribute changes the default number of columns used to print the directory (using the DIRECT
command) to the decimal number you specify as n. The initial default number of columns is equal to one and the
decimal number you specify should be in the range of 1-7.

Format:

~SET TTY COL n

Example:

.:..SET TTY COL 3

Note that specification of this attribute does not actually change the behavior of the KL8E handler. Also, the NO
modifier is not permitted to be used with this attribute.

1.1.4 ECHO
Specifying this attribute causes all TTY characters typed at the keyboard as input or received on the terminal as
output to be printed. Specification of this attribute affects the KL8E handler only and not character echoing by the
keyboard monitor.

Format:

.JiET TTY [NO] ECHO

Example:

.:..SET TTY ECHO

67

If it is desired that no character echoing take place, use the NO modifier in the command line. By specifying the NO
modifier, all TTY characters on input or output are not printed and do not appear on the terminal screen.

Example:

..:. SET TTY NO ECHO

J .1.5 ESCape
Specifying this attribute causes the escape character (ASCII code 33) to print as a control character (see also
ARROW attribute).

Format:

..:.SET TTY [NO] ESC

Example:

-:.SET TTY ESC

Specifying the NO modifier, in the command line, causes escape to print as a dollar sign ($).

Example:

. SET TTY NO ESC

Escapes can also be affected by the ARROW attribute. Specifying NO ARROW causes escapes to be sent to the
terminal with no modification. This is useful for sending escape sequences to CRT terminal.

J.1.6 FILL
Specifying this attribute causes two fill characters to be typed following a tab. This attribute should only be used in
conjunction with the TAB attribute.

Format:

..:. SET TTY [NO] FILL

To remove these fill characters, use the NO modifier in the command line.

Example:

. SET TTY NO FILL

J.1.7 FLAG
Specifying this attribute causes the handler to flag lower case characters on output by printing them as upper case
characters preceded by a quote.

Format:

..:. SET TTY [NO] FLAG

Example:

..:.SET TTY FLAG

68

If it is desired to remove the quote preceding upper case characters, use the NO modifier in the command line.

Example:

..,:.SET TTY NO FLAG

J.1.8· HEIGHTm
Specifying this attribute changes the number of lines that are printed on the terminal between pauses. Twenty-four
lines is the default value of m.

Format:

..,:.SET TTY HEIGHT m

Example:

..:,SET TTY HEIGHT 12

This attribute has no meaning unless the PAUSE attribute is also specified.

J.l.9 LC
Specifying this attribute causes the KL8E handler to accept lower case characters on input.

Format:

..:,SET TTY [NO] LC

Example:

.SET TTY LC

Specifying the NO modifier in the command line causes lower case characters on input to be converted to upper
case.

Example:

..:,SET TTY NO LC

J.1.10 PAGE
Specifying this attribute adds both the CTRL/S and CTRL/Q features to the keyboard monitor.

Format and example:

..:,SET TTY PAGE

When used with the NO modifier, this attribute removes the CTRLjS and CTRL/Q features.

Example:

..:.SET TTY NO PAGE

For more detailed information on the control characters, see the OS/8 Handbook.

69

1.1.11 PAUSE!!
Specifying this attribute sets the pause time between terminal output frames to the decimal number you specify as
n. The exact time depends on the cycle time of your machine.

Format:

.!.SET TTY PAUSE n

Example:

.!.SET TTY PAUSE 5

If it is desired that no pause takes place, specify the NO modifier in the command line or specify zero as n.

Example:

.!.SET TTY NO PAUSE
or

..:.SET TTY PAUSE 0

1.1.12 SCOPE
Specifying this attribute causes characters that are erased via the rubout or delete key by the KL8E handler, key­
board monitor, and command decoder to physically disappear from the CRT screen. This attribute should not be
specified if you do not have a CRT.

Format and Example:

..:.SET TTY SCOPE

1.1.13 TAB
Specifying this attribute causes the handler to print real tabs (ASCII code 211). This can only be used if your
handler has the TAB feature.

Format:

.:..SET TTY [NO] TAB

Example:

.!.SET TTY TAB

If your handler does not have the TAB feature, use the NO modifier in the command line. By specifying the NO
modifier, all tabs are simulated as spaces.

Example:

.!.SET TTY NO TAB

1.1.14 WIDTH!!
Specifying this attribute changes the width of the terminal to the decimal number you specify as n. The decimal
number you specify should be a multiple of eight and in the range of 1-255. However, n must not be 128. If your
TTY handler does not have the tab feature, the width you specified in the command line may not be your final
result. The NO modifier is not permitted to be used with this attribute. Placing an equal sign (=) between the attri­
bute and the decimal number you specify is optional.

70

Format:

..:.SET TTY WIDTH n

Example:

..:.SET TTY WIDTH 64

J.2 CARD READER A ITRIBUTES

J.2.1 CODEn
Specifying this attribute causes the card reader to use the card code you specify.

Format:

..:.SET CDR CODE n

where:

n is a decimal number having a value of either 026 or 029.

Example:

..,!.SET CDR CODE 026

Note that the NO modifier is not permitted with this attribute.

J.3 MAGNETIC TAPE A ITRIBUTES

J.3.1 PARITY!.
Specifying this attribute causes the parity check to be either even or odd.

Format:

..:.SET MTxx: PARITY x

Example:

..:.SET MTAO: PARITY EVEN

Note that the NO modifier is not permitted with this attribute.

J.3.2 FILES
Specifying this attribute causes the handler not to issue an automatic rewind when referencing block o.

Format:

..:.SET MTxx [NO] FILES

Example:

..!.SETMTA1: FILE

71

If it is desired that the automatic rewind take place when block 0 is referenced, use the NO modifier in the com­
mand line.

Example:

~SET MTAO: NO FILES

1.4 SYSTEM ATTRIBUTES

1.4.1 INITIAL xxxxx
Specifying this attribute causes the system device to execute the command you specify as when the system is boot­
strapped. This command can contain a maximum of five characters excluding a RETURN key.

Format:

~SET device INIT xxxxx

Example:

-:.SET SYS INIT HELP

If xxxxx is not specified, @INIT is assumed, and causes the system to execute the command in the fIle INIT.eM
when bootstrapped. Note that the INIT.eM fIle must be created prior to bootstrapping.

If it is desired that no special commands be executed at system bootstrap, use the NO modifier in the command line.
By specifying the NO modifier, the system prints the monitor dot immediately after bootstrapping.

Example:

. SET SYS NO IN IT

If an initi?1 command is specified and the system is bootstrapped, anything previously in memory is destroyed.

1.4.2 OS8
Specifying this attribute modifies the system handler to be OS/8.

Format and example:

~SET SYS OS8

Note that the NO modifier is not permitted with this attribute.

1.4.3 OS78
Specifying this attribute modifies the system handler to be OS/78.

Format and example:

. SET SYS OS78

Note that the NO modifier is not permitted with this attribute.

72

J.5 LINE PRINTER ATTRIBUTES

J.S.l LA78
Specifying this attribute modifies the LPSV handler to handle an LA781ine printer.

Format and example:

~SET LPT LA 78

J.5.2 LA8A
Specifying this attribute restores the LPSV handler to its original state.

Format and example:

.SET LPT LA8A

J.5.3 LC
Specifying this attribute causes the handler to print lower case characters. This attribute must only be used with line
printers that have the physical ability to print lower case characters.

Format:

~SET LPT: [NO] LC

Example:

.SET LPT: LC

Specifying the NO modifier in the command line converts lower case characters to upper case prior to printing.

Example:

.SET LPT: NO LC

J.5.4 LV8E
Specifying this attribute modifies the LPSV handler to work on an LV8E line printer.

Format:

.!.SET LPT: [NO] LV8E

Example:

~SET LPT: LV8E

By specifying the NO modifier in the command line, this will work on an LP08 and LS8E line printer.

Example:

.SET LPT: NO LV8E

73

.,naG'",," ""ilMi; #:4 M!

J.S.S WIDTH!!
Specifying this attribute sets the width of the line printer to the decimal number you specify as n.

Format:

.SET LPT WIDTH n

where:

n is a decimal number in the range of 1-256

Example:

-:,SET LPT WIDTH 80

Note that the NO modifier is not permitted with this attribute.

J.6 ANY DEVICE ATTRIBUTES

J.6.1 FILES
Specifying this attribute causes the handler to handle a file-structured device.

Format:

~SET device [NO] FILES

Example:

~SET MTAO: FILES

If it is desired that the handler handle non-file structured devices, use the NO modifier in the command line.

Example:

..:.,SET DTAl: NO FILES

J.6.2 DVCode nn

NOTE
This attribute remains in effect until the next time you
bootstrap, at which time the original status is restored.

Specifying this attribute sets the lOT device code used by the handler to the decimal number you specify as nn.
This number should be in the range of 30-77.

Format:

. SET device DVe nn

Example:

. SET RXAO DVe 64

This example could be used if your diskettes were hooked up to the non-standard device code of 64. Note that the
NO modifier is not permitted with this attribute.

74

J.6.3 LOCation n=m or LOCation n
Specifying the first argument changes the contents of the location in the handler you specify as n to contain the
value you specify as m. Both nand m are octal numbers.

where:

n is an octal number and must be in the range of 0-177 for one-page handlers and in the range of 0-377
for two-page handlers.

m is an octal number and must be in the range of 0-7777.

Format:

.:.SET device LOC n=m

Example:

.SET LPT LOC 37-1234

Specifying the second argument causes the system to print the current contents of the location in the handler you
specify as n. This is then followed by a slash. The user can now enter a new value in that location by typing that
value followed by a carriage return. If it is desired to leave the contents of that location unchanged, the user just
types a carriage return.

Format:

.:.SET device LOC n

Example:

.SET PTP LOC 144

J.6.4 READOnly
Specifying this attribute causes the device specified to become a read-only device. Therefore, any output sent to this
device causes an error message informing you that the output device is a read-only device.

Format:

~SET device [NO] REA DO

Example:

.:.SET TTY READO

To remove the READONLY attribute, use the NO modifier in the command line.

Example:

~SET TTY NO READO

NOTE
The READONLY attribute remains in effect only until
the next time you bootstrap, at which time its original
status is restored.

75

1.6.S VERSION ~
Specifying this attribute changes the version number of the handler to the letter you specify as x.

Fonnat:

~SET device VERSION x

Example:

.SET TV: VERSION G

Note that the NO modifier is not pennitted with this attribute.

1.6.6 BLOCK b, LOCation n=m or BLOCK b, LOC n
Specifying the first attribute changes the contents of the location in the handler you specify as n that is located in
the block you specify as b. The contents of that relative location is changed to the value you specify as m.

where:

b is an octal number

n is an octal number and must be in the range of 0-177 for one-page handlers and in the range of 0-377 for
two-page handlers

m is an octal number and must be in the range of 0-7777.

Format:

. SET device LOC n=m

Example:

~SET RKB1 LOC 10 = 2420

Specifying the second attribute causes the system to print the current contents of the location in the handler you
specify as n that is located in the block you specify as b. This is then followed by a slash. The user can now enter a
new value in that location by typing that value followed by a carriage return. If it is desired to leave the contents of
that location unchanged, the user types a carriage return.

Format:

~ SET device LOC n

Example:

~SET LPT LOC 175

76

APPENDIX K

FUTIL
08/8 FILE UTILITY PROGRAM

FUTIL was originally developed by Jim Crapuchettes of Menlo Computer Associates, Inc., Menlo Park, CA. It is now
included within the OS/8 Extension Kit for the convenience of PDP-8 users.

K.l INTRODUCTION

K.l.1 Description
FUTIL enables a user to examine and modify the contents of mass storage devices. It is the only program currently
available that can be used to patch programs containing overlays (F4/LOAD outputs). Other possible uses include
examination and repair of OS/8 directories; bad block checking and correction; decimal/octal conversion of double
precision numbers; output of the Core Control Block (CCB) of ".SV" files and the HEADER of ".LD" files; and the
creation of special directories. Supporting these functions is signed double-precision arithmetic expression evalu­
ation that can be used in the command syntax whenever a numeric value is needed.

FUTIL's command set is divided into two groups of commands. The first group uses single letters to direct the pro­
gram in the examination and modification of single words on the device specified. The second group of commands
uses command words to direct the program in the dumping, listing, modifying and searching of the device on a
block-by-block basis. Also included in this group is a series of commands to direct the program in some auxiliary
functions including setting and resetting switches and variables within the program, showing current FUTIL
parameters.

Several examples are given in Section K.4. The first two examples, especially, are simple and well-documented to
acquaint you with the features of FUTIL. You may want to look at them at this point to get a better understanding
of the material that follows.

K.1.2 Special Characters Used in This Appendix
To help increase clarity, the characters single quote ('), double quote ("), angle brackets « and» and square
brackets ([and]) have been used to help separate special items from the words around them. The single quote
character is used to surround a word-type command; for example, the 'FORMAT' option 'SET's up the format in
which output is to be done. The double quote is used to surround an item whose actual name is being used; for
example, the "RETURN" key is the key on the Teletype that has that word printed on it. The angle brackets are
used to surround the name of a type of item (a syntactical type); for example, "<n>" means that a NUMERIC
ITEM is to be used. The square brackets are used to surround optional items; for example, "w (ord] " would indicate
that the characters "ord" may be supplied optionally.

K.l.3 Special Characters Used in FUTIL
Several characters, when keyed, cause immediate action from the program. Typing either CTRL/P (which prints
"AP") or CTRL/C (which prints "'''C'') will immediately cause the program to stop whatever it is doing. CTRL/P
then causes the program to go back to command input mode and wait for you, while CTRL/C calls the OS/8 Moni­
tor (as it does with most system programs). CTRL/S and CTRL/Q control program execution (including all I/O).
Typing CTRL/S at any time will cause the program to pause and wait for either CTRL/C, CTRL/P or CTRL/Q.
Typing CTRL/Q will then allow program execution to resume. Any other characters entered at this point will be
simply ignored. If a CTRL/Q is typed by itself at any time, it is simply ignored.

77

NOTE
CTRL/S and CTRL/Q are active at all times, not just
during console output. The result is that both input
from the console and program execution with no con­
sole interaction (such as 'SCAN', 'WORD' and 'STRING'
command execution) can and will be paused and re­
started with these keys.

During console terminal input, three other keys can be used to help with editing the input string of characters.
These keys are RUBOUT, CTRL/U (which prints " U") and CTRL/R (which prints " R"). The action of RUBOUT
and CTRL/U is exactly the same as it is for the OS/8 Monitor and Command Decoder (including usage of "scope
mode" operation to change the action of the RUBOUT key from echoing the rubbed out characters between back­
slashes to erasing the characters from the screen). The action of CTRL/R is the same as that of the LINE-FEED key
for the Monitor and Command Decoder.

For those users with upper-lower case terminals, the program translates all lower case characters received from the
keyboard to upper case. The characters are echoed and handled internally as upper case characters. While this
makes use easier, it does not allow any lower-case characters to be input directly. In those cases where lower-case
codes are needed in the modification of a file, either use the codes directly or use a text editor. Note that this trans­
lation occurs only on input. Lower case characters in a file will be printed to the best ability of the output device.
This may produce incorrect results on upper-lower case line printers.

All of the commands are taken in context, that is, many of the characters which are used in the single character com­
mand set will not be considered to be commands if they are included in a line which begins with a command word
or if they are embedded within expressions.

The carriage-return ("RETURN") always starts command execution, and is the terminator for all word-type
command lines.

K.I.4 Running FUTIL
FUTIL is run using the OS/8 Monitor command "R FUTIL" (or "RU dev:FUTIL").

When started, FUTIL is set up to access the system device, the 'ERROR' message output mode is set to 'LONG', the
access 'MODE' is set to 'NORMAL' and no file is known. To access some other device, give the command 'SET
DEVICE dev'. To set the 'ERROR' mode to 'SHORT', give the command 'SET ERROR SHORT'. To use some
other access mode, give a 'SET MODE <mode>' command with a <mode> of 'LOAD', 'OFFSET' or 'SAVE'. When
in 'OFFSET' mode, the 'OFFSET' to be used can be specified by the command 'SET OFFSET nnnn'. Lastly, a file
lookup can be performed by giving a 'FILE' command (with three default extensions).

K.I.5 Access Method
The program accesses the OS/8 device one OS/8 block (256 words) at a time. For every location specified, the real
block and word are determined and compared with the current block in memory. If the desired block and current
block are not the same, the <something-changed> flag is checked to see if anything has beenchanged in the'current
block. If nothing has been changed, the new block is read in. If something has been changed, the current (modified)
block is first written out and then the new block is read in. This action happens correctly even when the access
mode is changed because it is done at the level of the OS/8 block number right before calling the current 'DEVICE'
handler. The status of the <something-changed> flag can be determined by simply 'SHOW'ing 'ABS', 'REL' or
'ODT'locations. If the flag is set, the word "MOD" will be output following location information.

The contents of the OS/8 device are therefore not changed unless the block in which changes are made is written out
either implicitly, as described above, or explicitly, using the 'WRITE' command (which is discussed near the end of
the section on word-type commands). The result is that typing CTRL/C before writing out the current block
(assuming it has been modified) will return to the Monitor without actually modifying the contents of the device

78

itself. Note, also, that only one implicit write attempt is ever made by the program. Should an error occur when the
write is attempted (for example, write-locked device), an explicit 'WRITE' command must be giv~n to actually write
out the block.

If the words within some blocks are changed accidentally, the <something-changed> flag can be reset by using the
'SET' command to reset the 'DEVICE' (described further along in this writeup) to the same device currently being
used. This will reset the <something-changed> flag, the current block in memory, and the file start block and core­
control-block/header-block (if they had been set by a 'FILE' command). The resetting of the current block in
memory will cause the next access to the device to read in the block desired. The resetting of the file information
will require a new 'FILE' command to be given to set it back up. If you can't remember what is the current setting
of the 'DEVICE', use 'SHOW DEVICE' first and then 'SET' it the same.

Files stored on an OS/8 mass-storage device generally fall into one of four categories. The program has four cor­
responding modes for accessing the device. The current 'MODE' of the program can be set by the 'SET' command
or by chaining (as described previously) and examined by the 'SHOW' command (to be described later).

The four categories and their corresponding modes are:

1. General (binary, ASCII and data) files - 'NORMAL' mode
2. Core image (save) files - 'SAVE' mode
3. FORTRAN IV load modules - 'LOAD'mode
4. System overlays - 'OFFSET'mode

The actual operation of the program for each of these modes is as follows:

'NORMAL'

'SAVE'

'LOAD'

The high order 7 bits of the 15 bit address are added to the current block number to get
the actual block number. The low 8 bits of the 15 bit address are used to specify the
desired word within that block.

The file to be examined must be set up by a 'FILE' command. "Block" numbers are used
to specify an overlay number (future MACRELjLINK support) and must be exactly zero
("0") for files without overlays (generated by the monitor "SAVE" command). The core
segment data (pages and fields) from the file's CCB (core-control-block) is used to
determine where on the device the desired word is to be found. This is done by first
determining the correct block from the file's CCB and then using the low 8 bits of the
address to specify the desired word within that block. Specifying a nonexistent address or
overlay for one of the single-character (ODT) commands will cause an error. Specifying a
nonexistent address or overlay for any of the word-type commands will cause the program
to ignore the address and access no data.

The file to be examined must be set up by a 'FILE' command. Block number specifica­
tions are actually taken as FORTRAN IV overlay specifications and must be contained
within the file. The information from the OIT (overlay-information-table) in the header
block of the file is used to determine where on the device the desired word is to be found.
Nonexistent addresses are handled the same way as for 'SAVE' mode.

NOTE
Because the "block" part of the location specification
changes definition depending on the mode in use, it is
recommended that the first operation following a switch
to 'SAVE' or 'LOAD' mode explicitly specify a "block"
part of O. Otherwise a previously specified "block" part
will be taken to mean a non-existent overlay number,
causing an error.

79

'OFFSET' The 12-bit 'OFFSET' (which is set by the 'SET' command and examined by the 'SHOW'
command) is subtracted from the low order 12 bits of the address and then the same
arithmetic as with the 'NORMAL' mode is used. This mode is used mostly with system
overlays whose start block number and actual loading address is known. By setting the
'OFFSET' to the loading address (which can only be a 12 bit number), the 12 bit "actual"
addresses of the overlay can be used.

The 'SA VE' and 'LOAD' modes are mentioned together throughout this appendix as MAPPED modes because their
method of address translation uses a descriptor block from the file of interest to control access to the file in a non­
contiguous manner.

NOTE
For all access modes, the OS/8 "actual" block number
for the block to be read is stored (for display) in the
computer MQ register (if present). The value is stored
before checking if the current block needs to be written.
I t is particularly useful for following the progress of the
'SCAN' command.

K.l.6 Referencing Words on the Device
The words on the OS/8 device are referenced by their <location> (often abbreviated as <1». This <location>
consists of an optional <block> or <overlay> number (which must be followed by a "." if present), and an
<address> or <displacement>. The <block>/<overlay> number is a 12-bit number which must be in the range
o thm 7776 (octal), or 4094 (decimal). Block number 7777 (or 4095, decimal) does not exist under OS/8, and the
program will ignore this number. The <overlay> number is further limited to the number of overlays at a given
address. Whenever the <b10 ck>/<overlay > part of the <location> is not used, the program will use the last speci­
fied value. The <address>/<displacement> is a 15 bit number (5 octal digits), but leading O's need not be specified.
Thus, the forms and their corresponding examples are as follows:

Form Example

<block>.<displacement>

<overlay>.<address>

<address>

1201.37524

3.57633

15721

223 <displacement>

CAUTION
Neither this program nor the OS/8 device handlers gener­
ally include checking for legal block numbers! It is
simply assumed that all accesses to the device will be
done after checking with the directory for legal file
start blocks and lengths, which is the normal mode of
operation under OS/8. This can have very interesting re­
sults with this program; for example, the RK8/E
handler, given a block number greater than 6257 (octal)
on device RKAO, will simply continue on into device
RKBO.

For the rest of this document, unless otherwise stated, block will mean <block> or <overlay> and address will
mean <address> or <displacement>, depending on usage. Therefore the definition will be:

[block.] address=<Iocation> = <1 >

80

Since these location references are numeric input, all of the characteristics described next can also be used when
specifying locations.

K.l.7 Numeric Items (Or Numbers)
Two "switches" are used by the program to allow the input of either octal, decimal or mixed numeric input where
ever numeric input is used. Each new command line always resets the input mode to octal. The character CTRL/D
(printed as ""'0") switches the input mode for any following input to decimal. The character CTRL/K (printed as
"""K") switches the input mode back to octal. These two switches may be located anywhere in numeric input.

For example, when inputting a string of numbers, the input would be alternately decimal and octal if it were

"'DI00,"KI00,"'D200,"'K200,"'D300,"'K300

Two other characters, the double quote (") and apostrophe ('), may be used for numeric input. The double quote
functions the same way in this program as it does in PAL8 in that the 8-bit ASCII value of the following character
is used as a number. As with all character input, the special characters described earlier cannot be used. The
apostrophe functions in a way similar to the way that the "TEXT" pseudo-op operates in P AL8 in that the following
two characters are masked to 6-bits each and packed into a 12-bit word. There must always be exactly two charac­
ters following the single quote. If it is desired to pack one half of the word with a 6-bit 00, use the character "@".
For example, a string equivalent to the file-name "PIP.SV" would be represented by the string

'PI,'P@,O,'SV

Expressions may also be used for numeric input when enclosed in parentheses. The parentheses pair "(and)" must
surround the expression. When this is so, all the options of the 'EV AL' command are available for numeric input.
For example, the contents of the switch register can be used for a number by the expression "(S)", or the current
block number +5 could be used by the expression "(B+5)". See the discussion of the 'EV AL' command for the
other options available.

NOTE
The opening and closing parentheses must completely
surround the expression. Neither digits nor the switch
characters may be outside of the parentheses or an error
will result. This is required because many of the non­
alphabetic characters have mUltiple meanings (com­
mands or operators) so the use of the parentheses pair
"(...)" provides the necessary context to remove
ambigUity.

K.1.8 Errors (And Error Messages)
Whenever the program recognizes an error of some type, it outputs an error message to inform you what went
wrong. The message tells both what went wrong and where in the command line the error was made. Depending on
the setting of the 'ERROR' mode switch, either 'SHORT' or 'LONG' messages are output.

The error messages have the forms:

"?<ee> at <cc> <error message>" -'LONG'

or

"?<ee> at <cc>" - 'SHORT'

81

where <ee> is the error code, <cc> fs the number of the column in the command line where the program stopped
scanning and <error message> is the message itself. There are currently 4S error conditions with corresponding
codes and messages to assist the user of this program. The error codes and their messages can be printed out by the
'SHOW' 'ERRORS' command. The 'ERROR' mode is set by the 'SET' command.

The error messages are swapped with the USR, but not in the normal manner, allowing write locked startup with the
loss of the message text (see the section on program execution for more information).

K.2 SINGLE CHARACTER (ODT-LIKE) COMMANDS
These commands allow the examination and modification of words on an OS/8 device in the same way that aDT
allows the examination and modification of the memory in the computer.

In all of the following commands where <n> - a numeric item - is specified, the operation of "closing" the loca­
tion is to place the value of <n> into the word if it is open. If the current location is not open, or if <0> is not
specified, no change takes place. Refer to the "Introduction to Programming" and the OS/8 Handbook section on
ODT for more information if needed. Note that (as mentioned previously) "[<0>]" with the following commands
means that a numeric item may be optionally supplied.

<1>/

[<n>] #

[<n>] $
(dollar sign)

[<n>] %

[<n>] &

[<n>] :

[<0>]<

[<n>] =

[<n>] >

[<n>] ?

[<n>]@

[<0>] [

Open and output the contents of location <1> in the current 'OUTPUT' mode.

Reopen the last location opened by one of these commands and output its contents
in the current 'OUTPUT' mode.

Close the current location, reopen it and output its contents in 'BCD' (3 digit binary­
coded decimal).

Close the current location, reopen it and output its contents in 'OS/8' ASCII.

Close the current location, reopen it and output its contents in 'BYTE' octal (8 bits
with OS/8 packing).

Close the current location, reopen it and output its contents in 'XS240' format packed
ASCII.

Close the current location, reopen it and output its contents in 'SIGNED' decimal.

Close the current location, reopen it and output its contents in 'OCTAL'.

Close the current location, reopen it and output its contents In 'UNSIGNED' decimal.

Close the current location, reopen it and output its contents in 'PDP' (symbolic).

Close the current location, reopen it and output its contents in 'DIRECTORY' format
[negated DECIMAL, DATE (see "@" next) and PACKED (ASCII)].

Close the current location, reopen it and output its contents in 'DATE' format:
dd-mmm-yy 2 digits each for the day and year and 3 alphabetic characters for the
month (except for illegal month numbers, which are output as a space and 2 decimal
digits).

Close the current location, reopen it and output its contents in 'ASCII'.

82

[<n>] \

[<11>]]

[<n>] $
("ALTMODE" or
"ESCAPE" key)

[<n>] <cr>

[<n>] ;

Close the current location, reopen it and output its contents in 'FPP' (symbolic).

Close the current location, reopen it and output its contents in 'PACKED' ASCII.

Close the current location, reopen it and type its contents as specified by the current
'FORMAT'.

Close the current location.

Close the current location and open the next sequential location. Neither address nor
contents are output, but one space is echoed.

NOTE
The ";" command can be used to advance through ad­
dresses without outputting their value in octal when
some other format is really more helpful. For example,
when examining a directory, the file name and extension
can be output using the "]" command (PACKED
ASCII), the date can be output using the "@" command
and the me length can be output using the ":" command
and all of this information can be made to appear on one
line by simply using the ";" command to do the incre­
menting between each of the output commands. The
result would look something like this:

2.5/2317]SO ;] UR;] CE ;] PA ; @30-AUG-72 ; : - 0071

For the following commands, the location of the newly opened word is output before the contents are output.
This location is composed of the 12-bit block number (4 octal digits), a"." for a separator, and the 15 bit address
(5 octal digits). This is immediately followed by "I" to separate the contents from the address.

[<n>] <line feed>

[<n>] !

[<n>] (circumflex
or up-arrow)

[<n>] _ (b ackarrow
or underline)

Close the current location, open and output the contents of the next sequentialloca­
tion in the current 'OUTPUT' mode.

Close the current location, open and output the contents of the previous sequential
location in the current 'OUTPUT' mode.

Close current location, open the location that would have been referenced if the con­
tents were a PDP-8 memory reference instruction, and output the contents of the new
location in the current 'OUTPUT' mode. Note: this command works like the stand­
alone version of ODT, not like the 08/8 version. Even if bit 3 of the word (the indirect
bit of a PDP-8 instruction) is aI, this command will not do the equivalent of an in­
direct reference.

Close the current location, take its contents as an address, open that location and print
its contents in the current 'OUTPUT' mode. This operates as an indirect address into
the current field would. The field currently being examined (the high octal digit of
the 5 digit location) will not be changed by this operation.

83

<1>+

<1>-

Open the location <1> locations forward from the current location and output its
contents in the current 'OUTPUT' mode. 15 bit arithmetic is used and the block part
is ignored, so this will operate across field boundaries, i.e., within a 32K area.

Open the location <1> locations backward from the current location and output
its contents in the current 'OUTPUT' mode. Same restrictions as with the '+'
command.

The "current 'OUTPUT' mode" has been mentioned several times above. The program will output the contents of
a location either as a four-digit octal number, or as a four-digit octal number with two spaces and the "symbolic"
representation ('PDP' or 'FPP') of the word. See the 'SET' and 'SHOW' commands as well as the following section.

K.2.l "Symbolic" Output Fonnats
The "symbolic" typeout is in approximately the format that input to an assembler would need to be in order to
generate the contents of the current location. It is assumed, of course, that these contents are either a PDP-8 or an
FPP-12/8A instruction, depending on the output selected. If the word to be output is not an instruction, as is the
case for the second word of all 2-word instructions (EAE and FPP), the decoding will obviously be meaningless.

For PDP-8 instructions decoding into' mnemonics is done for all memory reference instructions, for all legal operate
instructions (including 8/E EAE instructions except for "SWAB"), for a118/E processor, extended memory and
memory parity lOTs, for teletype and high-speed paper-tape lOTs, for 8/E redundancy check option lOTs, for pro­
grammable real-time clock lOTs and for FPP lOTs. There are currently a total of 96 lOTs and space has been
provided in the program for an additional 32 lOT codes and their mnemonics. These can be patched directly into
the program using itself. The first word of each four-word entry is the exact lOT code (for example, 6221 for
"CDF 20"), followed by 3 words containing up to 6 packed ASCII characters padded with trailing O's. No attempt
is made to decode any micro-coded lOTs. Either an exact match for the current contents will be found in the
table or the program will output "lOT nnnn where nnnn is the octal typeout of the low 9 bits of the code. The next
free location in the table (which is in field 1) is pointed to by the contents oflocation 10000. The table is termi­
nated by the first 0 for an lOT code, so additions must be contiguous and added directly at the current end of the
table.

For FPP instructions, the full FPP-8/ A instruction set is decoded except for "IMUL", which is actually an integer mode
"LEA". For the data manipulation instructions, the op-code mnemonic is followed by a "#" for the long-indexed
format, by a "%" for the indirect-indexed format and by a space for the base addressing format. For the indirect­
indexed and base addressing formats, the operand address is output as "B+nnn", where nnn is the 3 digit octal value of
the displacement (3 or 7 bits) multiplied by 3. These formats are those used by the RALF assembler. This is also
true for "LEA" instructions (i.e., "LEAl" is decoded as "LEA%"). Both jump and load-truth instruction decoding
is done as a single mnemonic whose last two characters indicate the specified condition. All instructions which use
2 words are decoded with an "*,, in the location in the normal assembler format where the value of the second word
would go. Index register number and "+" for auto-increment (if used) are also shown in the assembler format. Any
combinations which are not in the FPP-8/ A instruction definitions are output as "UNUSED".

NOTE
For both of these output formats, the use of the mapped
access modes (and the 'OFFSET' mode for PDP de­
coding) allow the use of the "actual" addresses when de­
coding the instruction.

K.3 WORD-TYPE COMMANDS
These commands are grouped by function, as follows:

Group 1:
DUMP
LIST
MODIFY

type/list out the contents of one or more blocks.
type/list out the contents of one or more locations.
modify one or more locations.

84

Group 2:
WORD
STRING
SMASK

Group 3:
SET
SHOW
FILE
WRITE
SCAN
REWIND

Group 4:
OPEN
CLOSE

Group 5:
IF
END
COMMENT
EXIT

Group 6:
EVAL

word search
string search
set up string search mask

set up program switches & variables
show settings of program switches & variables
look up file(s) on device
write out current buffer
scan for bad blocks
move device to block 1 & reset directory segment

open an output file on a file-structured device
close the open output file

cause command skipping based on expression value
resume command execution after unsatisfied 'IF'
pass user commentary to output device
exit to OS/8 (same as CTRL/C)

evaluate a signed, double-precision expression.

Command words may always be abbreviated to their first two characters, as with the Monitor and BUILD, and some
of the commands and their options may also be abbreviated to only one letter. When this is true, the command
forms given will include the one-letter form, and the option forms will give the one-letter form directly under the
full word form.

NOTE
In many cases, two or more words start with the same
letter. In these cases, only one of these words may be
abbreviated to one letter.

The descriptions for each command include each of the possible forms of the command, with an example of that
form following it on the same line.

K.3.1 Output Fonnats
The 'FORMAT' option is used to 'SET' up the output format for the "$" ('ALTMODE' or 'ESCAPE') command
(single-character) described earlier and the default format for the 'DUMP', 'LIST' and 'MODIFY' commands
described below. The syntax of this command is shown with the other 'SET' commands but is described here to
make the descriptions of the follOWing three commands more understandable. The <format> may be one of the
following:

ASCII
A

PACKED
P

OS

output each word as a single ASCII character.

Output each word as two 6-bit trimmed and packed ASCII characters. This is the
format of P AL8 TEXT strings.

Output each word as 1 or 2 OS/8 packed ASCII characters. The even address words
output 1 character and the odd address words output 2 characters.

85

Mf!iNM;;;; iRa' ;;;; KA

XS240

BYTE

UNSIGNED
U

SIGNED
S

OCTAL
o

BCD
B

PDP
FPP

DIRECTORY

Output each word as two 6-bit packed ASCII characters by adding a space (240 octal)
to the contents of each 6-bit byte. This is the format of PAL12. SIXBIT strings.

Output each word as 1 or 2 OS/8 packed bytes of 8 bits each as a 3-digit octal
numbers. The even address words output 1 number and the odd address words output
2 numbers.

Output each word as an unsigned decimal number.

Output each word as a signed decimal number.

Output each word as a 4 digit octal number.

Output each word as 3 bcd digits. The digits 0 through 9 are followed by ": " (10),
";" (11), "<" (12), "=" (13), ">" (14) and "?" (15).

Output each word as an octal number, followed by 2 spaces and its mnemonic repre­
sentation, assuming it to be a PDP-8 or an FPP-8A instruction. See the "symbolic"
output description.

Output each word in octal, decimal (signed), date (see "@" command) and packed
ASCII formats.

The 'FORMAT' is initialized to 'PACKED' ASCII.

The output from the 'DUMP' and 'LIST' commands for each of these formats is set up as follows:

1. At the beginning of each line the current location is output in <location> format with a 4 digit block
number and a 5 digit address, both in octal, as

<block> .<address>:

For example, "1271.17205: "--location 17205(8) relative to block 1271(8).
2. The maximum number of words per line is set up as follows:

A. The four character formats output 16 words per line with no extra characters.
B. The five numeric formats output 8 words per line with 2 spaces between each number.
C. The "symbolic" and directory formats output 1 word per line.

For 'LIST' with A or B, the first line may be shorter than succeeding lines to force the second and following address
outputs to be even multiples of 10 (octal).

K.3.l.l DUMP - The 'DUMP' command is used to output one or more whole 256 word device blocks in the
default or an optionally supplied format. This command has the following forms:

DUMP [<format>] <block string>

DUMP <block string>
D <block string>
DUMP <format> <block string>
D <format> <block string>

DU 100,200-213,250
D (B)-(B+I0),(S)
DU PA 212
DOS 514

86

where the optional <format> is one of those given for the 'FORMAT' option ab)ve, and the <block string> is one
or more numeric items separated by ","s and "-"s. The "-" is used when it is desired to dump a group
of blocks, and is used as

<start block> - <end block>

the" ," is used to separate single blocks or groups of blocks if there is more than one per line.

NOTE
When in a mapped ('SAVE' or 'LOAD') mode, the 'DUMP'
command cannot dump any block except the block con­
taining location O. To eliminate the confusion that this would
produce, the command will simply output an error message
reminding the user that the proper command to use in a
mapped mode is the 'LIST' command.

The output from the 'DUMP' command is sent to the 'DDEV' ("dump" device), which can be either the console terminal,
the line printer, or a file. See the 'SET' command for setting the "dump" device and output mode.

K.3.1.2 LIST - The 'LIST' command is used to output the contents of one or more words on the device in the
default or an optionally supplied format. This command has the following forms:

LIST [<format>] <location string>

LIST <location string>
L <location string>
LIST <format> <location string>
L <format> <location string>

LI123.200-517,200.0
L 312.10- 1 7,100- 117,176
LI UN 200-227
LSI 200-277

where the optional <format> is one of those given for the "FORMAT" option above, and the <location string>
is one or more <1ocation>s, separated by ","s. When it is desired to list a group of words, the "-" is used to
separate the start and end addresses as

[<block>.] <start address> [-<end address>]

If the block part is not specified, the last block number specified to the program will be used. If an end address
is specified, the start address is assumed to be in the same field as the end address (Le. the highest octal digit of the
5-digit address), so a maximum of 4096 words can be specified by each group.

As with the 'DUMP' command, the output from the 'LIST' command is sent to the 'DDEV'. For more informa­
tion see the last paragraph of the 'DUMP' command, the 'SET' command, and the miscellaneous information
section.

K.3.1.3 MODIFY - The 'MODIFY' command allows a string oflocations on the device to be changed in an
easy way. This is done by specifying the format of the input and letting the program do the work of storing the
data properly. This command has the following forms:

MODIFY [<format>] <location string>

MODIFY <location string>
M <location string>
MODIFY <format> <location string>
M <format> <location string>

MO 200.0-17,35-43
M 32745-32777
MO PA 12342-12360
MAS 367.7261-7275

87

where the <location string> has exactly the same format as for the 'LIST' command and the <format> op.tions
are shown below. If the <format> is not specified (as with the first form), the program will pick the one or the
formats below which corresponds to the current setting of the 'FORMAT' option. The corresponding formats are
shown below.

'MODIFY' format

ASCII
A

PACKED
P

OS

XS240

NUMERIC
N

'FORMAT' setting and 'MODIFY' action.

ASCII - one character of input is stored in
each word to be modified.

PACKED - two characters of input are packed as trimmed 6-bit characters,
padded with trailing OO's. Control characters (those with codes less than 240 octal)
are packed as a 6-bit 77 (flag) and the low-order 6-bits of the character. Note that
this means that "@" is packed as a terminator (00) and that "?" is not unique.

OS - three characters of input are packed into two words to be modified. When
using this format, the start address must be even and the end address must be odd.

XS240 - a space (240 octal) is subtracted from each character and then it is packed
as 6-bit bytes. Control characters are handled as with 'PACKED' format.

SIGNED & UNSIGNED decimal, BCD, OCTAL, BYTE, PDP, FPP and DIRECTORY
formats - the input is a string of numeric items which are stored one per 12 bit word.
See the section on numeric items. Note that bcd, byte, directory and "symbolic"
are not included, that decimal or octal input are determined by the "CTRL"- "D"
and "CTRL"- "K" switches and that signed numbers must be input enclosed in
parentheses, e.g., 17, (- 10), AD200, (- AK312), 40, (- AD35* 129).

For each location or group oflocations specified by the <Iocation string>, the program will prompt for the input
by printing the start location in the same format as described under the output format options above.

CAUTION
The program always modifies exactly the number of words
specified by each item in the <location string>. If you input
extra characters for the character formats or extra numeric
items for the numeric format, they will be ignored. If you
input not enough characters or items, the rest of the words to
be modified will be set to the 'FILLER' value (see the 'SET'
command). The program will not output any message if
either of these things takes place. This does, however, make
it possible to fill from 1 to 16 blocks on a device with zero
or some other value by specifying all the words to be filled
in 'NUMERIC' format and then responding to the prompt
with a single "(F)" (the value of the 'FILLER') and
"RETURN" .

Input tQ the program is always terminated by a carriage-return ("RETURN"). It is therefore not possible to insert
a carriage-return into a word using this command. All of the editing keys are available for use during input, there­
fore the CTRLjC, CTRLjQ, CTRL/S, CTRL/R, CTRLjP, CTRL/U and "RUBOUT" characters cannot be entered
using this command either. For all of the character input formats, spaces (excluding leading spaces, which
are ignored) and tabs in the input string are packed as they are seen. For numeric input, spaces are ignored
and the numeric items must be separated by commas.

The command can always be aborted by CTRL/P if you change your mind before the "RETURN" key is pressed.

88

K.3.2 Search Limits:
There are two search commands in the program, the 'WORD' search and the 'STRING' search. They both search
from a lower to an upper limit. The limits are either the 'LOWER' and 'UPPER' limits set by the 'SET' command
(the default) or the limits set up by the" 'FROM' <1>" (which overrides the 'LOWER' limit) and/or" 'TO' <1>"
(which overrides the 'UPPER'limit) clauses which can optionally follow the command word. Leaving out the block
parts of either of the two temporary limits will cause the program to use the block part of the corresponding default
limit set by the 'SET' command. When in a mapped ('SAVE' or 'LOAD') access mode, searching through non­
existent locations or overlays will never produce a match. Whenever a match is found, the program outputs the
location where the match occurred, followed by the word or string that matched.

NOTE
It is not possible to search through more than one overlay
per search command. To do so would require different and
separate handling of the "block" and "address" parts of
the limits when in the mapped modes including the reset­
ting of the "address" part. The result is that in the mapped
modes the "block" parts are used to set the overlay to be
searched (lower limit only) and only the "address" parts
are used in the determination of the number of words to
be searched.

K.3.2.1 WORD (Search) - The 'WORD' search command is used to search for a word for words which, masked
by the 'MASK' (which is set by the 'SET' command), will match the search word (also masked). This command
has five options and therefore has the forms:

WORD [UNEQ] [ABS] [MEM] [FROM <1>] [TO <1>] <n>

WORD<n>
W<n>
WORD UNEQUAL <n>
WOU<n>
WORD ABSOLUTE <n>
WA<n>
WORD MEMREF <n>
WOM<n>
WORD FROM <1> <n>
WF<1><n>
WORD TO<1> <n>
WT<1><n>

W0217
W (S)
WUNO
WO U (C&377)
WO AB 7402
W A 7000
WORMEM 41
WOM40
WO FR 213.0 2317
W F 1.35 (S)
W TO 213.345 1111
WORD T 6257.377 7777

... and any combination and order of the above options.

where <n> is the bit pattern being searched for, 'UNEQUAL' means that all words which are not equal to <n>
under the mask do match, the temporary limits clause is as described above, 'ABSOLUTE' means that the location
where the match occurred is to be output as an absolute block number and displacement rather than as a relative
location, and 'MEMREF' means that only words whose high-order octal digit is 0 thru 5 (i.e. the PDP-8 memory
reference op-codes) are allowed to match, independent of the setting of the 'MASK'.

When you want to search for those words which reference a specific location, 'SET' the 'MASK' to 377 (octal)
and then use the 'MEMREF' option. This will exclude all Operate (op-code 7) and lOT (op-code 6) "instructions"
from the output and can make it considerably easier to find the desired information (e.g. you will not output the
location of every "CIA", 7041 octal, when you are looking for references to location 41 octal).

89

NOTE
'UNEQUAL' has a higher priority than 'MEMREF', so
first each word is tested under the mask for equal/
'UNEQUAL' and if the specified condition is true, then
the word is tested for the 'MEMREF' condition.

K.3.2.2 STRING (Search) - The 'STRING' search command is used to search for a string of numbers (bit
patterns) under an optional string mask. This command has four options and therefore has the forms·:

STRING [MASKED] [ABS] [FROM <1>] [TO <1>] <numeric string>

STRING <numeric string> . ST 4557,0,0
STRING MASKED <numeric string> ST MA 4577,0,1203
ST M <numeric string> ST M 5566,0
STRING ABSOLUTE <numeric string> ST AB 'PI,'P@
ST A <numeric string> ST A "A, "B
STRING FROM <1><numeric string> STR FR 100 1,4000,2
STR F <1> <numeric string> ST F 123.4567 (S),(-S)
STRING TO <1> <numeric string> STR T 7577 'ER, 'RO, 'R@
ST F <1> T <1> <numeric string> ST F 1.0 T 7.0 'FO,'TP
... and any combination and order of the above options.

where the <numeric string> is simply a string of numeric items separated by commas, 'MASKED' specifies that the
search is to be done under the string mask, 'ABSOLUTE' is as for the 'WORD' search, and the temporary limits
clause is as described above.

When the 'MASKED' option is used, each item of the <numeric string> is masked by a separate mask word from the
string mask. If the string mask is shorter than the search string, it is used in a circular fashion (the first word follows
the last) as many times as necessary to mask all of the items of the search string. If the string mask is longer than the
search string, the extra words are not used. This feature allows for very complex searches to be done.

For example: Suppose it is desired to find all calls to a certain subroutine in a file and also see their arguments. This
could be done as follows:

FILE FUTIL
FUTIL.SV 6070-6120 "p
SE MODE SAVE
SMASK (-1),0,0
ST M 4547,0,0

- look up file to be searched
- you stop typeout
- set access mode to mapped .
- set mask for 2 arguments per call
- search for 4547 and 2 dummies

The output will give the address of the subroutine call (which requires an exact match due to the mask of 7777) and
the contents of the two following words (which can be anything, since they are masked by 0).

Using the mask specified above, a search could be made for an exact match, 2 "don't care words" and another exact
match by simply specifying a search string with 4 arguments. The first item of the string mask will be used to mask
both the first and the last items of the search string.

This command can be particularly useful when trying to find certain kinds of references in programs for which no
CREF listing (or perhaps no listing at all) is available.

K.3.2.3 SMASK - The 'SMASK' command is used to set up the string mask. It has the following form:

SMASK <numeric string> SM (-1),0,0,7000,0

where the <numeric string> is the same as for the 'STRING' search command above. The current contents of the
string mask may be examined by the 'SHOW' command.

90

K.3.2.4 SET - The 'SET' command is used to set up various switches and variables within the program. It has
many options, each of which is the name of the switch or variable and is always followed by a word or number
describing how it is to be set. All items are separated by spaces. The command has the following two forms:

SET <option(s»
S <option(s»

where the options are as follows:

OUTPUT OCTAL
OUTPUT 0
o PDP
o P
OUT FPP
o F

ERROR SHORT
E S
E LONG
ERRORL

FORMAT <format>

OFFSET <1>

FILLER<n>

LOWER <1>

UPPER <1>

DEVICE <device name [:] >

DDEV <device name[:]>

MODE NORMAL
MODEN
MODE SAVE
MODES
MO LOAD
MO L
MO OFFSET
MO 0

DMODENONE
DMODEPART
DMODEALL

SE OU PDP ERR LONG MODE SA V
S LO 100.0 UP 123.377 lDEV LPT

Set the output mode for the single-character commands.
Initialized to 'OCTAL'.

Set the mode for error message output. The 'SHOW'
'ERRORS' command will list all error messages.
Initialized to 'LONG'. Also set to 'SHORT' by
write-locking system device.

Set output format for 'LIST', 'DUMP', etc. The formats
have been described previously. Initialized to 'PACKED'
ASCII.

Set the offset to the low 12 bits of <1>. Initialized to O.

Set the filler to the low 12 bits of <n>o Initialized to O.

Set the lower search limit. Initialized to 0.200.

Set the upper search limit. Initialized to 0.17577.

Set up the OS/8 device for access. The handler is fetched
at this time. Initialized to "SYS" (device 01). ":" In
<device name [:] > is optional. <device name> is an
assigned or permanent OS/8 mass storage device name.

Set up the" dump" device. Initialized to 'SYS'. See also
'DMODE' below and 'OPEN' and 'CLOSE' commands.

Set up the device access mode. These have been described
previously. Initialized to 'NORMAL'.

Set up the "dump" output mode. Initialized to "NONE",
which sends all output to console only. 'PART'sends
'DUMP', 'LIST' and 'SHOW ERRORS' output to the 'DDEV'
(perhaps to a file). 'ALL' sends all output to both the console
device and to the 'DDEV'. (See section on file output.)

91

MASK
M

TEMP

<n>
<n>

<n>

Set the 'WORD' search mask to the low 12 bits of<n>.
Initialized to 7777.

Set the 'TEMP' storage to the 24-bit value of <n>. Value
is returned by subsequent use of the 'T' in expressions.

As many options as desired may be specified on one command line, separated by spaces. In the event of an error,
none of the options past the point where the error occurred will have been set. If you have any question, use the
'SHOW' command.

K.3.2.S SHOW - The 'SHOW' command is used to list the current setting of any of the program switches and
variables set by the 'SET' command and other infonnation. The program outputs either words or numbers to best
describe the current settings. As with the 'SET' command, as many of the options for this command as desired
may be specified on a single command line, separated by spaces. This command has the form:

SHOW <option(s»

where the <options> are as follows:

BLOCK
B

CCB
C

HEADER
H

ABSOLUTE
A

RELATIVE
R

. ODT

LOWER

SH BL CCB LOW UP ODT REL ABS

Output in octal the start block number of the last me specified
by the last 'FILE' command.

Output the core control block of the last file specified by
the 'FILE' command. If the file is not a 'SAVE' file, an
error will occur. The start address of the file is output as a
5-digit octal number, the job status word (JSW) is output
in octal, and the core segments are output as 5-digit octal
addresses.

Output the header block information for the last file specified
by the last 'FILE' command. If the file is not a 'LOAD' file,
an error will occur. The start address is output as a 5-digit
octal number, followed by the next free address as a 5-digit
octal number, the loader version number in octal and a
message if Extended Precision is required. Then, for each
level, a line is output with the number of overlays, the 5-
digit start address, the relative start block and the length of
the overlays (in blocks) for this level.

Output the absolute location of the last word accessed on the
device in <location> format (a 4 digit octal block number, a
"." and a 5-digit octal address) and the word "MOD" if the
current block has been changed (the <something-changed>
flag is set).

Output the relative location (what you specified) of the last
word accessed on the device in <1> format and the word
"MOD" if the current block has been changed .

Output the relative location of the last word accessed by one
of the special-character commands in <1> format and the
word "MOD" if the current block has been changed ..

Output the search lower limit in < 1 > format.

92

UPPER

FILLER

MASK
M

SMASK

OFFSET

MODE

DEVICE

DDEV

OUTPUT
o

FORMAT
F

VERSION

ERRORS
E

Output the search upper limit in <1> format.

Output the value of the filler in octal.

Output the 'WORD' search mask in octal.

Output the current contents of the 'STRING' search mask as
a string of octal numbers.

Output the value of the offset in octal.

Output the name of the current setting of the device access
mode switch ('NORMAL' , 'SAVE', 'LOAD' or 'OFFSET').

Output the OS/8 device name and number.

Output the name of the "dump" device.

Output the name of the current single-character (ODT) com­
mand 'OUTPUT' mode (OCTAL, PDP or FPP).

Output the name of the current output format.

Output the current version number of FUTIL.

Output a complete list of al~ error codes and their corre-
sponding messages. Note: This list is output to the 'DDEV'
("dump" device) so that it can be output using the "LPT" handler
for your system. Note that Version numb'er is also output
with errors.

K.3.2.6 FILE - The 'FILE' command is used to locate files on the OS/8 device and to set up the start block of
a file for the mapped access modes, 'SHOW CCB', etc. This command has the forms:

FILE <file name string>
F <file name string>

FI FUTIL PIP .SV
F MICRO.LD

where the <file name string> is a string of one or more OS/8 file names, separated by spaces. Any other characters
except"." will be taken as part of the file names. The program assumes extensions of" .sV", ".LD" and null (in
this order) when looking up the file. This can lead to a substantial amount of time when a large directory is
searched three times for a file that does not exist. Specifying an extension will cause only one lookup attempt to
be made. A null extension, if desired, may be specified by making the "." the last character of the file name. The
program does one (or more) separate lookup(s) for each file name specified and outputs either

<file name> ssss-eeee 0000 (dddd) b.111 dd-mmm-yr
or

<file name> ssss-eeee 0000 (dddd) b .111
or

<file name> LOOKUP FAILED

where "ssss" is the start block of the file in octal, "eeee" is the last block of the me in octal, "0000" is the length
of the file in octal, "dddd" is the length of the fIle in decimal, "b.111" is the block (segment) and location within
that block of the first word of the file entry (the first two characters of the name) in the directory, and dd-mmm-yy

93

4Q 4;aMiI.m, Ii:;:; II '"; I 441 %..#

is the file date. If the directory does not contain the extra word required for the date or the date word of the file is
0, the second form with no date will be output rather than the first form. The "LOOKUP FAILED" message means
either that the file name was not found on the device or that the device is a write-only device.

The actual lookup operation is performed by the OS/8 USR, which is swapped as needed (see section on program
execution). Since the USR keeps track of the current device once the first 'FILE' command is given, it will have the
wrong directory in memory if the medium (tape or disk) is changed on the physical device. This can be solved one
of three ways:

1. Use the 'REWIND' command to rewind the device being removed and clear the directory segment from the
USR.

2. Do a 'SHOW ERRORS' and abort the output when the message output begins. This will have swapped out
the USR. If messages are not available, use 1 or 3.

3. Use EXIT or CTRL/C to return to OS/8 and then directly restart FUTIL with the OS/8 START command.
This will have swapped out both error messages and USR from memory.

Any of these methods should be followed by a 'SET' command to reset the 'DEVICE' and the rest of the I/O
parameters desired.

The last file name specified that did not have a LOOKUP FAIL will be the file used in the mapped access modes,
'SHOW' 'CCB', etc. The program is initialized with no known file, so attempting to access any location in a mapped
access mode or attempting to 'SHOW' 'CCB' or 'SHOW' 'HEADER' without giving a valid 'FILE' command will
cause an error.

K.3.2.7 WRITE - The 'WRITE' command is used to force the program to write out the block currently in
memory. It has the form:

WRITE [<block>]

where the optional <block> overrides the default number of the block that was read to specify where the current
block is to be written. This obviously dangerous operation does allow a limited amount of copying in a special
situation, e.g., allowing a directory to be backed up by moving a copy to the end of the device (see the examples
section) or copying a single block from one device to another by changing the 'DEVICE' and then doing a 'WRITE'
(with or without an argument). Again, as stated in the section on accessing the device, caution must be used because
attempting to write beyond the end of a device may not be checked by the handler.

K.3.2.8 SCAN - The 'SCAN' command is used to do a rapid scan for read errors on the current 'DEVICE'. It
has the form:

SCAN <block string> SC 0-6257

where the <block string> is of the same form as for the 'DUMP' command. Each block is simply read. If an error
occurs, it is reported as:

0000 BAD BLOCK

where "0000" is the block number in octal, and the scan continues. This is the only FUTIL command that will
continue on a read error. Should the current block have been changed, and any other blocks be included in the
scan, an implicit write will be attempted by FUTIL. An error on this implicit write will be reported and then the
command will be aborted. This is the only time that this command will attempt a write. The command can then be
repeated if it is desired and it will execute (only one implicit write attempt is ever made by FUTIL).

94

NOTE
The OS/8 "actual" block number for the block to be
read is stored (for display) in the computer MQ register (if
present). It is particularly useful for following the
progress of this command. The value is stored before
checking if the current block needs to be written.

K.3.2.9 REWIND - The 'REWIND' command is used to move a tape back to block 1 and to reset the USR
directory segment. It has the form:

REWIND

and must be terminated by the "RETURN" key. It causes a read of block 1 of the device and resets the directory
segment in the USR (if in memory). Any subsequent 'FILE' command will cause the directory to be read.

K.3.3 File Output
Output to file-structured or non-file-structured "dump" devices is provided through two commands, 'OPEN' and
'CLOSE', and two 'SET' options, 'DDEV' and 'DMODE'. They can be used to simply make fast hard copy output
from the 'DUMP', 'LIST' and 'SHOW ERRORS' commands, to provide a hard copy log of all operations carried
out with a video terminal, to provide an ASCII file output of some data for later processing by another program, etc.

Output to file-structured and to non-file-structured devices (serial devices) is handled in two separate ways. Output
to the file-structured device is done by first setting the 'DDEV' and 'DMODE' and then 'OPEN'ing an output file.
No output to the device will be done until the file is open (to protect your directories), and then output will be done
one block at~ time. When output to the file is complete, 'CLOSE' your file to make it a permanent file (properly
terminated with a CTRL-Z and padded with nulls).

Output to a non-file-structured device is done by simply setting the 'DDEV' and 'DMODE'. Output to the device
will be done one line at a time, as soon as specified by the 'DMODE', and neither the 'OPEN' nor the 'CLOSE' .
commands are needed. The output is done by padding the buffer with nulls after each line is ready and then
calling the output device handler, so the handler used should ignore nulls (which leaves out the "PTR:" handler,
for example).

K.3.3.l OPEN - The 'OPEN' command is used to open an output file on file-structured devices for partial
or total output from the program. It has the form:

OPEN <file name> OPENOUT.DA

where the <file name> should be a standard OS/8 file name. The extension defaults to ".DU" (for "dump") if
none is supplied.

WARNING
FUTIL gives significance only to the characters
space, carriage-return and"." when scanning file
names. It is therefore the responsibility of the
user not to include characters that are not legal to
other OS/8 programs or the files will be able to be
accessed only through FUTIL or the CCL command
decoder.

95

This command must be given after the "dump" device is 'SET' by the 'DDEV' option. The output specified by the
'DMODE' will then be sent to this file, one block at a time (packed only 8 bits per word), until eithex the 'DMODE'
is changed or the file is 'CLOSE'd.

Files can be opened at will without closing any previous file. This gives the user additional flexibility, but at the
expense of possibly losing an output file if it is not 'CLOSE'd.

Should an error occur on the output device while doing output, the file is simply thrown away (it cannot be
'CLOSE'd).

K.3.3.2 CLOSE - The 'CLOSE' command is used to close an output file previously 'OPEN'ed .. It has the form:

CLOSE

and must be on a line by itself. If given with no file open, it is simply ignored.

K.3.4 Batch Operation
Operation of FUTIL under BATCH allows repeated operations to be done without re-entry. All of the operations
provided under interactive operation are provided except that the "RUBOUT" character is simply ignored, input is
taken directly from the BATCH stream and console output goes to the log output device.

Four commands have been added specifically to support use of FUTIL under BATCH: 'IF', 'END', 'COMMENT' and
'EXIT'. These commands are also available for interactive use, but are not as important in that mode.

K.3.4.1 IF - The 'IF' command was implemented specifically to allow FUTIL, when operating under BATCH to
be sure that the correct operations are proceeding before modifying something incorrectly. It has the form:

IF <expression> IF C-3575

where <expression> is a general expression of the same form as used by the 'EVAL' command. If the expression
evaluates to exactly zero (as a 24-bit integer), command execution will continue as though the command had not
been seen. If the result is not exactly zero, command skipping will begin and will continue until a line containing
the single word 'END' is found. Command execution will then resume.

This command was set up to test only for zero under the assumption that a test is to be made for some exact
quantity. However, the capabilities of the expression evaluator can be used to generate sufficiently complex
expressions for other tests. For example:

IF 40000000&(......)
IF - (40000000&(...))- 1
IF 10000&(-(77770000!(...)))

will test for positive
will test for negative
will test for 12-bit non-zero

K.3.4.2 END - The 'END' command is used to re-enable command execution following an unsatisfied 'IF'
command. It has the form:

END

and must be on a single line by itself. When encountered during command execution, it is ignored. Note that the
'IF'j'END' commands cannot be nested because the first 'END' found will re-enable command execution for any
number of previous 'IF' commands. For example:

IF '"
IF .. .
IF .. .
END will terminate all three!

96

)

K.3.4.3 COMMENT - The 'COMMENT' command allows optional comments in command input which will
simply be ignored during execution. It has the forms:

COMMENT [<comment>]
C [<comment>]

COMMENT THIS IS ONE
C

where [<comment>] is an optional comment. Note that blank lines may also be used for formatting of the output
log but that they will also close any open location.

K.3.4.4 EXIT - The 'EXIT' command provides a method of return to OS/8 other than "CTRL/C". It has the
form:

EXIT

and the rest of the line is ignored. Exit does not write out the last block modified. Use 'WRITE' to make changes
permanent.

K.3.4.5 EVAL - The 'EVAL' command is used to evaluate a parenthesized expression of signed double-precision
integers. It has the forms:

EV AL <expression>
E <expression>

EV S*"'D4096+D
E B*400+L

where the <expression> follows the normal rules for arithmetic expressions. Legal operators, in their order of
precedence are:

(
/
*

+
&

)

evaluate inner expression
signed division
signed multiplication
subtraction
addition
logical product ("and")
logical sum ("or")
expression end

Besides 24 bit numeric input (which can be octal, decimal or mixed octal and decimal under the control of the
CTRL/D and CTRL/K switches and ASCII and packed ASCII using" and', the following "variables" may be used:

C
L
B

F
T

S

R

D

curent contents (oflocation "L").
current location (15 bit, same value as is output by the 'SHOW' 'RELATIVE' command).
current block number (as for "L").

contents of 'FILLER' (12 bits).
contents of 'TEMP' (24 bits).

contents of the console switch register.

the remainder of the last division or the high product of the last multiplication. 24 bits, the
sign may not be correct.

contents of OS/8 Monitor "date" word.

Overflow on addition, subtraction and multiplication are ignored, but trying to divide by 0 will cause an error.

97

iii:;""" ";;, Uk, M¥ «

If no errors occur, the program evaluates the expression and types out the results in the form:

= 00000000 (sddddddd)

where "00000000" is the double precision result in octal and "sddddddd" is the signed double precision result in
decimal (the sign is either "-" or" ").

K.4 EXAMPLES
These exam pIes are to help provide an overview of the use of the program and to stimulate the thoughts of the user.
Example 3 and those that follow are not as well commented as the first two examples since it is intended to show
concepts of what can be done with the program rather than the mechanics of the operations. Should questions
arise on the mechanics, it is suggested that the first two examples and the discussions of the commands in question
be reviewed.

EXAMPLE 1:

Assume that you would like to know what CCL remembers of your last ".UA" command. The remembrances are
stored on block 65 (octal) of the system device. As described in the source of CCL, each of the remembrances is
allocated 40 (octal), or 32 (decimal) words in this block, the first four of which contain binary information and the
last 34 of which contain the last input command, stored as packed ASCII characters. The lines contain the inputs
for the commands as follows: TEeO and MAKE (line 0), EDIT and CREATE (line 1), COMPILE and EXECUTE
and PAL (line 2), VA (line 3), UB (line 4), and UC (line 5). Thus, the saved ".VA" command can be listed by out­
putting the contents of the 4th through 37th words of area 3 in block 65 as packed ASCII characters as follows:

.R FUTIL <cr> - call FUTIL from OS/8

EVA 3*40+4<cr> - calculate start displacement
= 00000144 (0000100) - of the 3rd "line" (=144[8])

Now list the words of this line with the LIST command, specifying the output format to be PACKED
ASCII characters and the words to list to be block 65 locations 144 (from above) through 144+33 (the
expression for the location of the last word of this "line"). FUTIL responds with the start location and
a line of characters, and the next location with a multiple of 10 [8] as an address and a line of characters.

LIST PACKED 65.144-(144+33)<cr>

0065.00144: DIR R:FUT???*/E/R=3
0065.00160:

- list the words wanted

- that's it!

EXAMPLE 2:

NOTE
For the examples above and below, the symbol "<cr>"
is used to show that you need to terminate your com­
mand lines with a "carriage return". All other lines
above are output by the program.

Now assume that you would like to make the simple patch for OS/8 FORTRAN IV users with an FPP-8/ A to use the
lockout feature of the FPP-8/ A, as given in the August 197 6 DIGITAL Software News. This requires changing the
contents oflocation 15776 of FRTS (the Fortran Run Time System) from 400 to 410 (which adds the lockout hit).
You also want to update the date word of the directory entry for FRTS (the 4th word beyond the start of the
entry) to show that the file has been updated. This is done as follows:

.R FUTIL<cr> - call it

98

SET MODE SAVE <cr> - set FUTIL to a mapped mode
FILE FRTS<cr> - look up the file to map
FRTS.SV 0671-07220032 (0026) 1.327 31·DEC·75

- "1.327" is start of entry!

Now use "ODT" command "/" to open and change one word.

15776/0400410<cr> - add LOCKOUT bit

SET MODE NORMAL<cr> - switch to unmapped

Now use "ODT" command "/" with an expression to open the date word, command "@" to output
it in "date" format and then put today's date (as an octal value) in its place.

1.(327+4)/6375
@31·DEC·75 (D)<cr>

WRITE<cr>

EXAMPLE 3:

- change file date to today's date

- send out this change

NOTE
First the file FRTS.SV is changed, and then the OS/8
directory is updated to the current date. Changing the
address desired from FRTS to the directory automati·
cally writes out the modified block of FRTS before
reading in the directory segment that contains the file
name. However, the changed directory segment must be
written out explicitly because there are no other blocks
to examine for this example.

While doing a "/S" transfer with PIP, PIP gives a read error in your file "SOURCE.PA". Attempting to read it with
EDIT causes EDIT to type "?O"'C" and return to the Monitor. Find out what is wrong as follows:

.RFUTIL

FI SOURCE.P A - look up the file
SOURCE.PA 0243·03510107 (0071) 2.005 30·AUG·74

SE MASK 0 LO 243.0 UP 351.377

WUNEO

- set up mask & limits

- search the file

?ee AT 08 FATAL READ ERROR - here is the problem
[Note: "ee" may change with version, so is left out.]
SH ABS - find out where it is
ABS. LOC = 0271.00000

WR

DU OS (B+L/400)

0271.00000: p

W UN FR 272.0 0

... c

- attempt to clear error

- it worked, now dump it

- change your mind

- check the rest of the file

- ok, now go fix the source

99

This sequence can also be carried out using the SCAN command as follows:

.R FUTIL
F1 SOURCE.PA - use CCL to call & lookup

SOURCE.PA 0243-03510107 (0071) 2.005 30-AUG-74
SCAN 243-351 - scan the area

0271 BAD BLOCK

271.0/ ?ee AT 07 FATAL READ ERROR

WR

DU as (B+L/400)

0271.00000: "'P

... c

- here is the problem!

- get block with trouble

- attempt to clear error

- it worked, now dump it

- change your mind

- ok, now go fix the source

If the error had been of some type other than a clearable error, the 'WR' command might also have failed.

EXAMPLE 4:

After using BUILD to change your system, find out the device number for "DTA1":

.R FUTIL

SE DEV DTA1
SHOWDEV
DEVICE = DTA1 (06)

EXAMPLE 5:

- fetch the device handler

- number is decimal

By accident you zero a DECtape directory which contains the only copy of a file you need. You have the PIP
"/E" listing of the directory but only want to re-build it enough to get the wanted file. The name of the file is
"LOST.FI":

.RFUTIL

SEDEVDTA1
EV"'D5+14+11+10+16+13+8+5
= 00000122 (0000082)
EV "'D730- "'K61- "'D82-25
= 00001076 (0000574)

1.0/ 7777 (- 3)
4/7777
0001.00005\ 0000 'DU
0001.00006\ 7556 'MM
0001.00007\ 1752 'Y@
0001.00010\ 3451 0
0001.00011 \ 6234 (D)
0001.00012\ 4235 (- "'D82)
0001.00013\ 5761 'La
0001.00014\ 3341 'ST
0001.00015\ 2371 0

- it was here
-lengths of all preceding
- files
- rest of DECtape room

- now 3 files
- 1 extra word per entry
- set up a "DUMMY" file
- over the old <EMPTY>

- a null extension
- put in today's date
-length
- the desired file

100

0001.00016\ 1107 'FI
0001 DOOI7\ 1366 (D)
0001.00020\ 301 S (- "'D2S)
0001.00021 \ 341S 0
0001.00022\2713 (-"'DS74)

WRITE
"'c

- the extension

- its length
- an <EMPTY> to end it
- the rest of the tape

- now write it out
- & exit to use it

The "LINE-FEED" key was used to advance through the words.

The above example is exactly the same as hand calculating the required length of the "DUMMY" file and then doing
the following sequence using PIP:

.RPIP
*DTA1 :DUMMY</I=122
*DTA1 :LOST.FI</I=31
*"'C

- enter the DUMMY file
- enter the LOST.FI

Note that the lengths of the files are specified for PIP in octal.

EXAMPLE 6:

Search for the end of each page of text in the file "WRITE.UP". Since the file is an OS/8 ASCII file, which has two
characters packed in the low 8 bits of two words and a third character packed in the high 4 bits of both of the two
words, the form-feed character (L) may be packed as the third character in some cases. So it is necessary to search
both through the low 8 bits of each word and through the high 4 bits of each pair of words. Do it as follows:

.R FUTIL

FI WRITE.UP
WRITE.UP 0301-0437 S"'P
SE MA 377
SE LO 301.0 UP 437.377

W A ""'L

....... typeout occurs here

SMASK 7400,7400

ST M A (""'L *20),(""'L *400)

....... more typeout here

- typeout stopped

- char mask & limits set

- search for form-feed

- set up string mask

- search for 3rd char f-f

- only even addresses are real
- parts of form-feed pair!

In the string search, both the string and the data searched are "masked" by the string mask.

EXAMPLE 7:

You just assembled and saved PROG.SV but forgot to use the "/P" switch to ABSLDR. Fix the CCB (core control
block) as follows:

.R FUTIL

101

;;, 4 WAAIA,iiA41i.\¥(iIfHIi;.\.I*, *4444»44%4N

FIPROG.SV
PROG .SV 0341- "'P
341.1/6203
0341.00002\ 6400
0341 .00003\ 0000 400

WR

SHOWCCB
CCB:

- stop output
- the "CDF CIF" part &
- the address
- change the JSW

- write the new CCB

- check it this way

SA = 06400, JSW = 0400
CORE"'P - ok, output stopped

EXAMPLE 8:

The CREF listing file for your source file is about 732 blocks long (iust over one full DECtape). If you do want to
CREF the file onto a DECtape, you must do it either with the "/X" (don't process literals) switch or else you could
use FUTIL to set up the directory with 735 blocks (by starting at block 2) as follows:

.RPIP
*DTA1:</Z
*"'C

.RFUTIL

SE DEVDTA1
1.1/0007 2
6/ 6446 (C-5)
WR
... c

EXAMPLE 9:

- zero the directory

- * * see WARNING below * *
- change first block number
- 5 more blocks
- write it out
- now CREF it

WARNING
Do not copy files onto a device that has been fixed this
way with FOTP (COPY command) because it writes out
a directory of six blocks after the transfers are finished
and this will zap blocks 2 through 6 (the first 5 blocks of
the first file) after the copy is done! PIP and other
processors do not monkey around with the directory
and will handle this correctly.

Something is extremely flaky in your system and you have been losing your directory repeatedly. After fixing it up
with both PIP and FUTIL, you just want to back it up while you generate your output files onto another devic,e.
Since your system device has a total of 6260 (octal) blocks (an RK8E) you back up the directory as follows: .

. R FUTIL

1.0/7714 WR 6251
2.0/7740 WR 6252
3.0/7770 WR 6253
4.0/00003.2/0000
"'c

- transfer blocks up by
- 6250 blocks.

- block 3 was last, so
- all done

102

Shortly after this, everything crashes totally, i.e., directory smashed, system gone from disk. Rebooting from
DECtape you use PIP to restore the system area and then use FUTIL to restore the directory:

.R FUTIL

SET DEV RKAO
6251.0/7714 WR 1
6252.0/7740 WR 2
6253.0/7770 WR 3

SCAN 0-6250

EXAMPLE 10:

- load non-system device
- transfer by 6250 blocks
- the other way
- the last one

- do a SCAN for good luck

During a SCAN of a device a bad block is found in an important data file and you would like to know just how far
the read of that block really succeeded (e.g., on a DECtape, the type of error will determine whether the read will
abort immediately or wait until the end of the physical block). The following commands assume that the block
number is "bbbb" and set the input/output buffer in FUTIL to zeros before doing the read:

bbbb.O/ ?ee AT 07 FATAL READ ERROR

MOD NUM 0-377
bbbb.OOOOO: 0

SET DEV same

/ ?ee AT 01 FATAL READ ERROR

DUMP OC bbbb

- do read to set up

- set whole buffer to 0

- set to device now in use

- force the read again

- dump & examine the block

This example makes use of the fact that changing the DEVICE resets the status of the buffer without changing its
contents. This status includes the block number known and the <something-changed> flag. Therefore the next
access to the block causes the block to be re-read without attempting to write it out. Following the second error, as
much as possible of the block will have been read into memory and can now be examined for non-zero values
(assuming that the data itself was not all zeros). If the read terminated before the end of the block, there should be
an obvious separation between the zero and non-zero values.

EXAMPLE 11:

Your system has a line printer which can output 132 characters per line and 68 lines per page and you would like to
change PAL8 and CREF to make use of this to use less paper. Allowing two lines at the bottom of the page, the
lines per page should be set to 66 (call this "nl"). Three changes need to be made to P AL8 to change the global
number of lines per page (nl), the number of items per column of the symbol table (-nl+l) and the number of
symbols per page (3* [nl-l]). One change needs to be made to CREF to change the number of lines per page (nl)
and three changes need to be made to change the number of items per line of cross references. Since CREF uses 10
characters for the symbol name and 6 characters per line number, 19 references can comfortably fit on one line
(19*6+ 1 0 = 124). The following changes to these two programs will increase the number of lines per page and the
number of items per line in the cross-reference outputs and then update the dates of the two programs in the
directory:

.R FUTIL FILE P AL8 .SV

PAL8.SV 0200-02170020 (0016) 1.057 03-APR-76
SET MODE SAVE
1104/ 0070 "D66 - global lines per page

103

1256/7711 (- "'D65)

1273/0245 (3*"D65)

- symbol table column size

- symbols per page

FILE CREF - * * SEE NOTE BELOW * *
CREF.SV 0220-0234 0015 (0013) 1.065 18-JAN-74

2564/7704 (- "'D66) - lines per page as above

2017/ 1102 1366> TAD 2166

2132/ 1102 1366> TAD 2166

2166/0077 (-"D19)

- change instructions here

and here to get new

references per line

SET MODE NORM

1.(57+4)/2036 (D)

(65+4)/0624 (D)

WRITE

- reset access mode

- change dates ofPAL8

- and CREF.

- output the last changes

Location 2166 was not used previous to this patch. Note that the first reference to the word in CREF will cause the
last block that was modified in PAL8 to be written out. Similarly, the first reference to the directory will cause the
last block that was modified in CREF to be written out.

NOTE
These patches were empirically determined and applied
to PAL8 V9H and CREF V3C. They have been applied
to some other versions of both programs but have not
been tested with OS/8 V3D. USE THESE WITH
CAUTION!

K.5 MISCELLANEOUS INFORMATION

K.S.l Program Execution and Memory Allocation
The start address is 06400. When the program is started here, it resets the internal CCB buffer, resets the start
address to 00200, tests the "scope mode" status (changing the action of "RUBOUT" if it is set), performs initializa­
tion for the extended date format, attempts to write out the error messages (resetting the 'ERROR' mode control if
unsuccessful), tests the "BATCH-in-progress" status (changing all console I/O to BATCH I/O if it is set) and jumps
to 00200. If, for some reason, it is desired to manually re-start the program after it has been loaded, it can be
re-started at 00200.

The error messages are swapped with the USR, but not in the normal manner, allowing write-locked startup with the
loss of the message text. When the program starts execution, it writes the messages onto the system device in the
same area used by the USR in swapping. Once this has been done, the USR or error messages need only be read into
memory, as needed. In the case where it is not possible to write on the system device, i.e., it is write-locked, the
messages are discarded, 'SHORT' mode is set permanently and execution continues without a hitch. Similarly,
should an error occur when reading the messages, 'SHORT' mode is set permanently and an error is given to warn
that this has happened (with no message, of course!).

The program uses almost all of the available memory in an 8K PDP-8. It is allocated as follows:

00000-06237
06240-06577
06400-06777
06600-07177
07277 -07 577

program proper
buffer for arguments
- once only code for chaining -
"dump" device handler area, 2 pages
device handler area, 2 pages

104

10000-11777
12000-12577
12600-15700
15700-16377
16400-16577
16600-17177
17200-17577

USR area & error messages (swapped)
CCB/header input and test, file output
text strings, lists
string mask, command buffer stack
CCB buffer, 1 page
"dump" device buffer, 2 pages
I/O buffer, 2 pages

The buffer for arguments in field 0 is defined long enough to store 45 numeric string items. The string mask buffer,
in field 1, is 66 words long, and the command buffer, also in field 1, is 140 characters long. These lengths were
chosen in anticipation of input from console devices with up to 132 characters per line. No checking of any kind is
done to protect against overflow of any of these buffers under the assumption that these buffers are large enough for
any reasonable input to this program, however, the arrangement of the buffers is set up in such a way that the most
valuable data is the farthest distance from a variable buffer.

The expression evaluation stack buffer uses the area in field 1 from the end of the command buffer (approximately
location 16130) to the beginning of the CCB buffer (location 16377). This should provide ample room for any
expression able to fit on one line. Again, no checking to prevent overflow is done.

K.6 COMMAND SUMMARY
SINGLE-CHARACTER commands: ([<n>] = optional <item»

[<1>] / <1>+ <1>-
[<n>] with # $: % & < = > ? @ [\]

$ (ESCAPE) RETURN; LINE FEED !

WORD-TYPE commands: (And modifiers, many of which are optional)

ASCII PACKED OS XS240 UNSIGNED SIGNED BCD BYTE OCTAL PDP FPP DIR
DUMP [<format>] <block string> ([<format>] s above)
LIST [<format>] <location string> ([<format>] s above)
MODIFY [<format>] <location string> ([<format>] s below)

ASCII PACKED OS XS240 NUMERIC

WORD

STRING

SMASK

SET

<option(s» <n>
UNEQUAL ABSOLUTE MEMREF FROM <1> TO <1>
<option(s» <number string>
MASKED ABSOLUTE FROM <1> TO <1>
<number string> e.g., 1,34,0,7700,0,(-1),377

<option>
OUTPUT
ERROR
FORMAT
OFFSET
LOWER
UPPER
DEVICE
DDEV
MODE
DMODE
MASK
FILLER
TEMP

<setting>
OCTAL PDP FPP
LONG SHORT
<format>
<1>
<1>
<1>
<device name [:] >
<device name [:] >
NORMAL SAVE LOAD OFFSET
NONE PART ALL
<n>
<n>
<n>

105

***::443 ;.i A %1M,; ¥if4 4A¥

SHOW

FILE
WRITE
SCAN
REWIND

OPEN
CLOSE

IF
END
COMMENT
EXIT

<option(s»
BLOCK CCB ABSOLUTE RELATIVE ODT LOWER UPPER
MASK SMASK OFFSET MODE DEVICE OUTPUT FORMAT
HEADER FILLER VERSION ERRORS DDEV
<file name(s»
[<block>]
<block string>

<file name>

<expression>

[<comment line>]

EVAL <expression> e.g., (1 !(S+ "DI7))*"KI5+(C&7600)
! &+- */()CLBF TSR D

Numeric Input:

"D "K <digits> "<1 character> '<2 characters>
(... all eval options ...)

Control Characters:

"p "C "u "R RUBOUT "s "Q

K.7 SINGLE-CHARACTER COMMAND OUTPUT FORMAT SUMMARY

([<n>] :: optional numeric item)

Output in octal or octal & "symbolic" (PDP or FPP):

<1>/ / [<n>] "LINE-FEED"
<1>+ <1>-

Output in a specified format:

BCD
OS/8 ASCII
SIGNED decimal
BYTE octal
XS240 format packed ASCII
OCTAL
UNSIGNED decimal
PDP symbolic
DIRECTORY

[<n>]! [<n>]" [<n>]_

[<n>] #
[<n>] $
[<n>] :
[<n>] %
[<n>] &
[<n>] <
[<n>] =
[<n>] >
[<n>] ?
[<n>]@
[<n>] [
[<n>] \
[<n>]]
[<n>] $

DATE format (extended, in alpha)
ASCII
FPP symbolic
PACKED ASCII

(ESCAPE) As 'SET' by last "SET FORMAT x"

No output: [<n>];

106

APPENDIX L

DUMP PROGRAM

The DUMP handler is a new OS/8 2-page handler that obtains blocks of binary data on file-structured devices and
sends them to the LP08line printer to produce a listing. This listing is called a DUMP.

Format:

.COPY DUMP:<dev:filename.ex
or

.RPIP
*DUMP:<dev: filename .ex/I

Example:

.COPY DUMP:<SYS:FL2

After typing the command line followed by a carriage return, type the initial block number of the area in the speci­
fied file you want dumped. This causes block number 0000 of the file to automatically be dumped. In addition, it
also causes the DUMP routine to skip to the block number specified, dump it and any block numbers greater than it.

Because the DUMP handler contains a routine that interacts with the keyboard monitor, you can change the block
number previously entered by typing a new block number on the keyboard. When a new block number is specified,
the current block number is completely dumped before the new block number takes effect.

If a carriage return is entered following the command line and no block number is supplied, the DUMP handler starts
at block number 0000 of the file and dumps all the remaining block numbers in the specified file.

For each block of data (2 memory pages) sent to the LP08line printer, there is a printed page of data followed by a
form feed. If an uneven number of pages is sent to the line printer during the DUMP operation, the odd numbered
page printed on the line printer will show only half a block (one memory page) of data.

If an illegal character (excluding 0-7, carriage return, and CTRL/C) is typed while entering the block number, a
question mark (?) is echoed on the terminal. This causes any digits typed before it to be ignored and allows you to
type in a new block number. If CTRL/C is typed while the DUMP handler is running, control returns to the key­
board monitor.

In addition to the CCL format shown using the COPY command, there is a -D option. When specified, this option
forces the output device to be DUMP:. This option can be used with any CCL command.

FORM FEEDS
A form feed on the LP08 line printer occurs before block 0 data is sent to the handler, and after the handler is called
to do a close (page count of 0).

ADDING THE DUMP HANDLER TO YOUR SYSTEM
The DUMP handler can be added to your system the same way any other handler is added which is through the
BUILD program. Its group name as well as its entry point name is DUMP; and the current version of the handler is
A. This handler does not directly interact with the keyboard monitor but contains a routine that performed that
function. It is a 2-page handler and has no coresident handler. The keyboard monitor runs completely overlapped
with the LP08 handler.

107

_. U&IM,,,,,", riM ;;(.;;; ,.11 1iI#4¥$

FORMAT OF THE DUMP
At the top left of every printed page in the DUMP listing is a 4-digit octal number, This number is the relative file
block number of the data that is printed on that page. The first column of 4-digit octal numbers represents line
numbers. Note that each line number is followed by a slash (/) which distinguishes it from the remaining eight
columns. The remaining eight columns represent the actual data words located within a specific block in a file. The
next column containing 16 characters is a representation of the eight data words on that line. There are two 6-bit
characters packed in one word. That is, each data word is represented by two ASCII characters.

The last column containing 12 characters is another representation of the eight data words on that line. There are
three 8-bit characters packed in two words. That is, every two data words is represented by three ASCII characters.
Note that some of these spaces in this column could represent non-printable characters. Any character that is not
physically on the line printer can be referred to as a non-printable character.

The following listing is an example of a single printed page from a DUMP listing.

f/Jf/Jf/J4

f/Jf/Jf/Jf/J/ 7733 2213 f/Jf/Jf/Jf/J 172f/J 7777 1322 f/J5f/J6 63f/Jf/J ? [KK@@OP??KREF3@ [P R F@
f/Jf/Jf/J1/ 15f/J1 6264 7653 1322 f/J5f/J6 630f/J 22f/J2 6264 MA24>+KREF3@R824 A4<+R F@ 4L
f/Jf/Jf/J2/ 7767 142f/J 2326 f/J00(/) 0216 8304 7777 2213 ?7LPSV@@BN3D??RK V@D
f/Jf/Jf/J3/ f/J5f/J2 1404 2326 6354 7737 0425 1520 0f/Jf/Jf/J EBLDSV3,? .DUMP@@ B VL P f/J
0f/J(/)4/ f/J215 6314 7776 (/)681 000(/) (/)00f/J 15(/)1 6314 BN3L?> F1@@@@MA3L L 1 AL<
0f/Jf/J5/ 7777 0662 0(/)(/)(/) (/)0(/)(/) 15(/)1 6314 7777 (/)664 ??F2@@@@MA3L??F4 2 AL< 4
f/J(/)(/)6/ 0(/)0(/) (/)(/)(/)f/J 15f/J1 6314 7777 (/)425 152(/) (/)(/)(/)f/J @@@@MA3L??DUMP@@ AL< P (/)
f/J(/)f/J7/ 2(/)f/J1 63f/J4 7761 2425 152(/) 62f/Jf/J 2f/J(/)1 6314 PA3D?1DUMP2@PA3L DL P < LL
f/Jf/Jlf/J/ 7762 f/J663 f/Jf/J0f/J f/Jf/Jf/Jf/J 15f/Jl 6314 7777 f/J665 ?2F3@@@@MA3L??F5 3 AL< 5
f/J(/)11/ f/Jf/Jf/Jf/J f/Jf/Jf/Jf/J 1521 6314 7777 f/J363 f/Jf/Jf/Jf/J (/)(/)0(/) @@@@MA3L??C3@@@@ AL<
0f/J12/ 16f/J1 6314 7777 f/J361 00f/Jf/J 0000 15(/)1 6314 MA3L??C 1@@@@MA3L AL< AL<
0(/)13/ 7777 0362 0000 f/J(/)00 1501 6314 7777 (/)364 nC2@@@@MA3L??C4 AL<
0014/ (/)(/)(/)f/J f/Jf/Jf/J0 15(/)1 6314 7777 2262 f/Jf/Jf/Jf/J (/)(/)(/)(/) @@@@MA3L??R2@@@@ AL< 2
f/J(/)15/ 15f/J1 6314 7777 2261 f/Jf/J0f/J f/Jf/Jf/Jf/J 15f/J1 6314 MA3 L ??Rl@@@@MA3L AL< 1 AL<
(/)(/)16/ 7777 2263 f/Jf/Jf/Jf/J f/J0f/Jf/J 15(/)1 6314 7777 f/J365 ??K3@@@@MA3L??C5 3 AL<
f/J(/)17/ f/J0f/Jf/J f/Jf/Jf/Jf/J 15f/J1 6314 7777 0425 152f/J 63f/Jf/J @@@@MA3L??DUMP3@ AL< P@<
f/Jf/J2(/)/ 2(/)f/J1 6324 7762 (/)425 152f/J 63(/)(/) 0216 6324 PA3T?2DUMP3@BN3T TL P@< T
f/Jf/J21/ 7776 2266 8(/)7(/) 1623 (/)216 6324 7777 (/)425 ?> RF08NSBN3T??DU 8 C T
f/Jf/J22/ 152(/) 64(/)(/) 0216 6324 7776 0425 152f/J f/Jf/J(/)(/) MP4@BN3T?> DUMP@@ P = T P (/)
(/)f/J23/ 232(/) 6334 7774 (/)425 152f/J 650f/J 2f/Jf/J1 6334 SV3\?<DUMP5@PA3\ V\L P@= \L
f/J(/)24/ 7762 (/)425 152f/J 66f/Jf/J 2f/Jf/J1 6354 7761 (/)425 ?2DUMP6@PA3,? 1 DU P L
(/)(/)25/ 152(/) 65(/)(/) f/J216 6354 7776 0425 152(/) 64(/)(/) MP6@BN3,?> DUMP4@ P = P =
(/)f/J26/ 2(/)(/)1 6324 7762 0425 152f/J 65f/J(/) f/J216 6334 PA3T?2DUMP5@BN3\ TL P@= \
(/)(/)27/ 7776 15(/)1 f/J363 65(/)f/J f/J216 6354 7735 15~)J ?>MAC35@BN3,?]MA A @]A
f/Jf/J3(/)/ f/J363 65f/J(/) 2(/)(/)1 6354 74f/J(/) f/J617 17(/)(/) f/Jf/Jf/Jf/J C35@PA3,<@FOO@@@ @ L @(/)

f/Jf/J31/ 132f/J 6354 7775 15f/Jl (/)363 65f/Jf/J 152f/J 6354 MP3,?=MAC35@MP3, P < A @ P <
f/Jf/J32/ 7744 f/Jf/J(/)f/J 7252 15f/Jl f/J363 65f/Jf/J 1423 6354 ?$@@:*MAC35@LS3, *A @ <
f/Jf/J33/ 5654 f/Jf/Jf/Jf/J 7271 63f/Jf/J f/Jf/Jf/J1 6264 7653 1322 2,@@:93@PA24>+KR , @9@ 4L+R
f/Jf/J34/ f/J3(/J(/J 63(/J(/J f/J216 6264 7767 3(/J(/Jf/J f/J(/Jf/Jf/J f/Jf/Jf/Jf/J EF3@BN24?7X@@@@@ F@ 4
f/Jf/J35/ 15f/J1 6264 7777 7252 7277 73(/J4 744f/J 53f/Jf/J MA24??:*:?;D< +@ A4< * ?D @

f/Jf/J36/ 7666 1234 4f/Jf/Jf/J 7235 7241 2422 7666 1234 >61\@:] :!TR>6J\ 6 6
0037/ 4000 7235 7241 2422 4000 7235 7241 2422 @:] :!TR@:] :!TR

108

\
;

APPENDIXM

RKLFMT DISK FORMATTER PROGRAM

M.I INTRODUCTION
This appendix describes the procedure for formatting a RKOS disk using the RKLFMT program. The RK8E/RK8L
disk formatter program is designed to write and check the format of the complete disk cartridge. Only standard
Digital surface format is available (Le., sectors numbered in the normal numerical sequence 0, 1, 2, 3,4, 5, etc.).
The program occupies locations 0000 to 4177 of the current field.

Restrictions, using this program, are that the RK8L control which can control up to 8 drives, will not run with the
DW8E bus adapter. This is because the RK8L control uses IOTO for extended drives 4-7 which is not available on
the DW8E.

Hardware requirements are as follows:

1. PDP-8/E, 8/F, 8/M or 8/ A Computer
Other family of 8-compatible computer with necessary DW8E bus adapter for RK8E control only.

2. At least 4K of read/write memory, and at least 8K of memory is needed for operation of the console
package.

3. ASR-33 teletype or equivalen t
4. RK8E disk control or RK8L disk control
5. RKOSJ or RKOSF disk drive(s)

NOTE
The RKOSF drive is considered as two separate units.
When answering all questions each separate unit must be
specified: DSKO?, DSK1?, DSK2?, etc.

M.2 RUNNING THE PROGRAM
To format an RKOS, type the following command:

.:..RRKLFMT

Mount the disk (write enabled), and the instructions in the program that follow.

If the formatter program fails to operate correctly, run the following programs:

1. All basic and extended memory diagnostics
2. For the RK8E control, run the RK8E diskless control test and the RK8E drive control test.
3. For the RK8L control, run the RK8L instruction test.

M.3 ST ANDARD TEST PROCEDURES
To run the formatter program, follow the procedure in Section M.4. The following two procedures describe the
drive setup procedure for the RKOSF and the drive cartridge mounting procedure for the RKOSJ.

109

; *"iji\iW&Ii&.=GIUAM4R$iiIW414\fi\¥4\fP!¥"

M.3.1 RKOSJ Drive Cartridge Mounting Procedure
The following is the correct cartridge mounting procedure for the RK05J disk drive. Any deviation encountered
during this procedure is considered an error condition.

a. Set switch labeled "RUN/LOAD" to the "LOAD" position.
b. Tum AC power on.
c. Verify that light labeled "PWR" is on.
d. Wait for light labeled "LOAD" to come on.
e. Verify that lights labeled "RDY", "ON CYL", "FAULT", "WT", and "RD" are off.
f. Open access door.
g. Insert cartridge.
h. Close access door.
i. Set switch labeled "RUN/LOAD" to the "RUN" position.
j. Wait for lights labeled "RDY" and "ON CYL" to come on.
k. Toggle switch labeled "WT PROT" and verify that the light labeled "WT PROT" goes on and off.
l. Toggle switch labeled "WT PROT" until light labeled "WT PROT" goes off.
m. Verify that lights labeled "FAULT", "WT", "RD", and "LOAD" are off.

M.3.2 RKOSF Drive Setup Procedure
The following is the correct drive setup procedure for the RK05F disk drive. Any deviation encountered during this
procedure is considered an error condition.

a. Set switch labeled "RUN/LOAD" to the "LOAD" position.
b. Turn AC power on.
c. Verify that light labeled "PWR" is on.
d. Wait for light labeled "LOAD" to come on.
e. Verify that lights labeled "ROY", "ON CYL", "FAULT", "WT", and "RD" are off.
f. Set switch labeled "RUN/LOAD" to the "RUN" position.
g. Wait for lights labeled "ROY" and "ON CYL" to come on.
h. Toggle switch labeled "WT PROT" and verify that the Ugh t labeled "WT PROT" goes on and off.
i. Toggle switch labeled "WT PROT" until light labeled "WT PROT" goes off.
j. Verify that lights labeled "FAULT", "WT", "RO", and "LOAD" are off.

M.4 FORMAT PROGRAM
a. Make all drives ready to be formatted:

For RK05J drives use the RK05 drive mounting procedure (M.3.l).

For RK05F drives use the RK05 drive setup procedure (M.3.2).

b. Set switch labeled "RUN/LOAD" to the "LOAD" position on all drives not being formatted.

The TTY will type the following program name, information, and question.

RK8E/RK8L DISK FORMATTER PROGRAM

For all questions answer Y for YES or N for NO.

FORMAT DISKO?

c. If the operator desires to format disk 0, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK I?

110

d. If the operator desires to format disk 1, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK 2?

e. If the operator desires to format disk 2, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK3?

f. If the operator desires to format disk 3, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK4?

g. If the operator desires to format disk 4, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK 5?

h. If the operator desires to format disk 5, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK 6?

i. If the operator desires to format disk 6, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

FORMAT DISK 7?

j. If the operator desires to format disk 7, type Y for YES, otherwise, N for NO, on the TTY keyboard.
The following question is then typed on the TTY.

ARE YOU SURE?

k. Typing N for NO causes the repetition of all the previous questions. Typing Y for YES, results in execu­
tion of the operation selected.

1. Program execution is approx. 80 seconds per disk drive. After all disks selected have been formatted and
checked, the TTY types the following pass complete message and question.

RK8E/RK8L DISK FORMATTER PASS COMPLETE
FORMAT SAME DISK(S) AGAIN?

m. If the operator desires to repeat the operation selected, type Y for YES. Typing N for NO causes the
repetition of the initial start-up questions.

M.S ERRORS
When a recoverable error occurs the TTY prints an "ERROR HEADER" and error information pertaining to the
failure.

111

14\1P44iW"""''''''''''M4i;''''" Nkcr N«

Possible error headers are as follows:

DISK DATA ERROR
READ STATUS ERROR
WRITE STATUS ERROR
RECALIBRATE STATUS ERROR

After the error header mentioned above is typed, the TTY prints some of the following error information pertaining
to the failure.

PC: Program Location of Failure
GD: Expected Information
EX: Extended Drive Bit
CM: Software Command Register
ST: Contents of Status Register
DA: Software Cylinder, Surface, and Sector Register
CA: Initial Current Address
AD: Address of Data Break
DT: Data Found During Data Break

After the error information is typed, the TTY types one of the following questions asking the error recovery desired.

1. If the error was a recalibrate error, the following question is typed.

TRY TO RECALIBRATE SAME DISK AGAIN?

Typing a Y for YES causes the repetition of the recalibrate sequence on the disk in error. Typing N for
NO results in progressing to the next available disk.

2. If the error was a write error the following question is typed.

TRY TO FORMAT SAME CYLINDER AGAIN?

Typing Y for YES results in a repeat of the write sequence on the current cylinder. Typing N for NO
causes progressing to the next sequential cylinder.

3. If the error was a read or check error the following question is typed.

TRY TO CHECK SAME CYLINDER AGAIN?

Typing a Y for YES causes the repetition in the read and check sequence on the current cylinder. Typing
a N for NO results in progressing to the next sequential cylinder.

M.6 PROGRAM DESCRIPTION
The formatting is actually a function of the RK8E or RK8L control and drive logic. The program writes data on
every sector in the "WRITE ALL" mode, then checks the data while in the "READ DATA" mode to verify that the
header words written on every sector are also correct. The "READ DATA MODE" automatically performs a check
header function.

The first two words of every sector are set to the absolute disk address (Le. command register bits 9-11 and cylinder,
surface, and sector bits 0-11, respectively). The remainder of the data area is set to all zeros when the data is written.
Only the first two words of every sector (Le., the addressing information) are checked when data is read in the
"READ DATA" mode.

112

M.7 CONTROL CHARACTERS
Control characters are used to give the operator the ability to perform the following functions.

CTRL/C

CTRL/R

CTRL/E

CTRL/L

CTRL/D

CTRL/S

CTRL/Q

NOTE
The program will respond to the control character in five
seconds or less.

Starts the monitor at location 7600.

Restarts the program.

Continues the program from an error if allowed by the diagnostic or from a waiting statement.

Switches the terminal messages from the display to a line printer. To restore the messages on
the tenninal, CTRL/L must be typed again. If no printer is available and CTRL/L is typed
the result is that the console package will wait for CTRL/C or R. The CTRL/L sends output
to the line printer and the program attempts to continue as if a CTRL/E was typed in.

Allows you to change the switch register during program operation. Typing this character
results in an interrogation of the switch register question.

Stops program execution and waits in a loop for a continue. The only way to continue is to
type a CTRL/Q, R or C. This is a non printing character.

This causes continuation of a program after a CTRL/S is typed. This is a nonprinting character.

M.8 MISCELLANEOUS

M.8.1 Waiting Message
The waiting message allows the operator time to make a decision as to what control character to type. This message
appears at the end of pass message if the halt on pass bit is set. The control characters may now be used to perform
the needed function.

The waiting message is printed after an error message if the halt on error bit is set. Here again the control characters
may be used.

The waiting message is printed if operator intervention is required.

M.8.2 End of Pass
The normal program pass complete as described in Section MA is used.

M.8.3 Errors
The standard error reports previously described in Section M.S are used.

M.8.4 Location Changes
The following locations can be changed to meet the specific need for modification of the diagnostic.

3637 Is the location set for the number of filler characters after a CRLF set to four (4)

113

(I)

c::
t=:
:E
0.0 c:: o

";j
....
=' u

READER'S COMMENTS

OS/8 Handbook Update
DEC-S8-0SHBA-A-DN4

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

(I)
fIl
~

(I) Please indicate the type of user/reader that you most nearly represent.
~

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Non-programmer interested in computer concepts and capabilities

Name Date ___ __

Organization ___ _

Street ___ __

City ___________________ State _________ _ Zip Code ___________ _

or
Country

.--Fold lIere--

.--- Do Not Tear - Fold lIere and Staple -----------------'------------------------------ (,

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage ,will be paid by:

Software Documentation
146 Main Street ML 5·5/E39
Maynard, Massachusetts 01754

FIRST CLASS
~;.

PERMIT NO. 33

MAYNARD, MASS.

